2N
Y
University of Twente
Enschede - The Netherlands

UNIVERSITAT % Radboud
j DES :@5 ¢ University
SAARLANDES %% Nijmegen
Rm RHEINISCH-
WESTFALISCHE
TECHNISCHE
HOCHSCHULE
AACHEN

Manual

MARKOV REWARD
MODEL CHECKER

Version 1.3

September 17, 2008

Authors:
Ivan S. Zapreev
Christina Jansen

nijmeegs instituut
voor informatica
en informatiekunde

Formal
ﬁ Methods
& Tools

O *

niii

Contents

1 Introduction 2
2 MRMC tool description 5
3 Building MRMC 9
3.1 Building MRMC fromsourcecode 9
3.1.1 Getting&lInstalingGSL 9

3.1.2 LINUX . . . o e e e 10

3.1.3 Windows 10

3.1.4 MacOS X 10

3.1.5 Getting&UsingSplint 10

3.2 Getting & Installing TestSuite 11
3.2.1 Configuringtests 11

4 MRMC'’s Input Files 13
41 Thetra FileFormat 13
4.2 Thelab FileFormat 13
4.3 Thectmdpi FileFormat 14
44 Therew FileFormat 15
45 Therewi FileFormat 15
46 GettingMRMCmodels 15
46.1 PRISM e 16

4.6.2 Performance Evaluation Process Algebra (PEPA) 17

5 Running MRMC

18

51 Commandlineoptions 18

6 MRMC run-time Commands 19
6.1 BasicCommands 19
6.1.1 help 19

6.1.2 help logic 20

6.1.3 help simulation o 20

6.1.4 help rewards 22

6.1.5 help common 22

6.1.6 print ... e e 23

6.2 AdvancedCommands 24
6.2.1 Common e e 24

6.2.2 NumericalMethods, 25

6.2.3 Simulation 25

6.24 RewardS. 28

7 Property Specification with Temporal Logics 29
7.1 Common-logicsubset 29
7.1.1 StateformulaeSFL) 30

7.1.2 PathformulaeRFL) 30

7.2 PCTL . . o e 30
7.3 PRCTL 31
7.4 CSL . . . e 31
7.5 CSRL e 32

8 Model Checking by Discrete Event Simulations 33
8.1 Confidence intervals and model checking 34
8.1.1 Simpleproblem 34

8.1.2 Using confidenceintervals 34

8.1.3 Solvingtheproblems 35

8.2 Simulationengine 35

9 MRMC Test Suite
10 Contact

A CTMDPI: Model examples
A.1 Markov decCiSion proCesSesS v i e e e

A.1.1 Markov decision processes with internal non deteisnin

B RNG Investigations

B.1 Random Number Generators
B.1.1 Linear Congruential Generator (LCGpAsm
B.1.2 Improved LCGPM8{ (ILCG)—ciardo
B.1.3 Combined LCG$ch9] (CLCG) —app crypt
B.1.4 Mersenne TwistenjN98] (Twister) —ymer
B.1.5 RNGsfrom GSLRIFSFO7p,

B.2 Experimentalsetup
B.2.1 Non-Uniform Discrete Random Variables
B.2.2 Exponentially Distributed Random Variables

B.3 RNGcomparison-results
B.3.1 Non-Uniformly Random Numbers

B.3.2 Exponentially Distributed Random Numbers

C CTMC Steady State Simulation
C.1 Heuristic RegenerationPoint

C.2 Heuristic Sample-size Steps oo

39

41

48
48
49

1 Introduction

Model checking is an automated technique that establishesher certain qualitative prop-
erties such as deadlock-freedom or request-responseaeewgnts (“does a request always
lead to a response?”) hold in a model of the system under deration. Such mod-
els are typically transition systems that specify how thstey can evolve during execu-
tion. Properties are usually expressed in temporal exdaasf propositional logic, such as
CTL [CES84.

In the last years adapting model checking to probabiliststesns has been a rather ac-
tive research field. This has resulted in efficient algorghior model-checking DTMCs
and CTMCs, as well as Markov decision processes (MDPs), dteaisupported by sev-
eral tools nowadays such asHMC?[HKMKS00], PRISM[HKNPOH], GreatSPNEDHO(],
VESTA[SVAOS], Ymer[You05H, and the APNN ToolboxfFKTO03]. Various case studies
have proven the usefulness of these model checkers. Pdpgies are Probabilistic CTL
(PCTL) [HJ94 and Continuous Stochastic Logic (CSIBHHKO3].

Although these model checkers are able to handle a largd setasures of interest, the
reward-based measures have received scant attention befdov Reward Model Checker
(MRMC) allowes for verification of Markoveward models (MRMSs), in particular DMRMs
and CMRMs. These are the underlying semantic models of wauhggh-level performance
modeling formalisms, such as reward extensions of stoichpiicess algebras, stochastic
reward nets, and so on.

MRMC [KKZ05, JKO"07, Zap0g supports the following types of probabilistic models:

e Discrete time Markov chains (DTMCs)

e Continuous time Markov chains (CTMCs)

e Discrete time Markov Reward models (DMRMS)

e Continuous time Markov Reward models (CMRMs)

e Continuous time Markov decision processes (CTMDPIs

Hence, MRMC support&robabilistic Computation Tree Logic (PCTlgnd Continuous
Stochastic Logic (CSUpr property specification as well as their reward extens®mba-
bilistic Reward Computation Tree Logic (PRCTar)dContinuous Stochastic Reward Logic
(CSRL) Table 1.1 provides correspondence between the before-mentionécklagd the
supported models.

For PCTL the realized algorithms are mostly discussed bysblamand Jonsson ikl 94.
The exception is a long-run operator which is handled smaddhe steady-state operator of

1Here, | stands for the internal non-determinism.

DTMC | CTMC | DMRM | CMRM | CTMDPI
PCTL +
CSL + +4a
PRCTL +
CSRL +

aThere is no support for the steady-state and unbounded-tiachability properties.

Table 1.1: The supported models and the correspondingdogic

CSL. The supported algorithms for PRCTL have been deschipehdovaet al.[AHKO3].
Model-checking techniques for CSL (on CTMCs) are derivenfi{BHHKO03] and for its
reward extension CSRL fronCKKP05 (see alsoBHHKO00, HCH*02]). For the latter one
we have implemented two algorithms for time- and reward-oed until formulae. One is
based on discretization /00] and another on uniformization and path truncatiQrsp4.
The algorithms for PRCTL and CSRL support both state and Isgprewards. Model-
checking of CSL (on CTMDPIs) implements procedures desdrib [BHKHO5, BHH " 06].

Itis important to note that the model-checking procedunesgrated in MRMC were com-
plemented with the following extensions that are aimed a@rawing the tool’s performance
and accuracy:

Steady-state (long-run) operator of CSL (PCTL). For the operatof..;, (V) the al-
gorithmic improvement lies with searching only for BSCCattlan containl states, as
opposed to searching for all BSCCs. The modification thatdes® to the model-checking
algorithms is straightforward and therefore we do not exgtan further details.

Unbounded-until operator of CSL (PCTL). For model checking.., (¢ U ¥), we
first exclude states, using graph reachability analyssnfwhich U states are always or
never reachable. Then the model checking procedure foethaining states is carried out
as usual. All techniques required for this improvement ascdbed in CG04.

Time-bounded until operator of CSL. We have implemented a uniformization pro-
cedure PHHKO3] with a precise on-the-fly steady-state detection whichisswksed in
[KZ05, KZ06]. Similar to unbounded-until operator, the technique@®4 is employed to
detect and remove states from which thatates are never reached. Also we employ ideas,
described in [KKNPO1], that allow to compute the reachability probabilities &t initial
states at once.

Bisimulation minimization. The bisimulation minimization algorithms have been real-
ized for PCTL, CSL, PRCTL and CSRL, in the latter two caseheut impulse rewards.
For more details considekKZJ07].

Model checking by discrete event simulation. We developed and implemented al-
gorithms for model-checking CSL properties by simulatidrfinite-state CTMCs. Our
approach is based on Monte Carlo simulation and derivatiaoofidence intervals. We

provide statistical algorithms for model checking the mogtresting CSL operators, such
as steady-state, unbounded-reachability, and timeviategachability operators. For more
details we refer to4ap04.

The remainder of the manual is organized as follows. In Girdpive discuss platforms
supported by MRMC, the implementation language and licgnsiFurther, we illustrate
the tool usage and introduce a snapshot of MRMC architesiareimple examples. The
next chapter, Chapté&; explains the installing process of the tool. The inputfllenats of
MRMC are discussed in Chaptér Chaptels is devoted to command-line options provided
by the tool, while in Chaptes a list of all available MRMC commands and run-time options
is given. The semantics of all supported logics are intredua Chaptei7 and afterwords
information about model checking by means of simulationvergin ChapteB. Chapterd
speaks about MRMC's test suite, while Chapt@éconcludes with the list of groups involved
in the MRMC development and the corresponding contact méation.

2 MRMC tool description

MRMC is a command-line tool that supports an easy input forana is realized in the C
programming language. The latter allows the tool to be samallfast due to compiler-based
optimizations and smart memory management within the implgation {]. Also,
MRMC uses simple but high-performance data structured) agca slightly modified ver-
sion of the well-known compressed-row, compressed-coltgpresentation of probability
(rate) matrices, and bit vectors for representing setsatést For more information about
the MRMC architecture, algorithms and data structures ¥ te Section 2.2 off].
Since MRMC v1.2.2 the tool supports all major platforms, eanMicrosoft Windows,
Linux and Mac OS X. The tool is distributed under the GNU GahPublic License (GPL)
[hand is available for free download at:

http://www.mrmc-tool.org/

| cTMc| | DTMC| |cTMDPI| | AP labeling| | Rewards|
\/ ¢ ¢ ¢ Options

[tra ﬁle] [.ctmdpi ﬁle] [.lab ﬁle] [.rew/ .rewi ﬁles]

H

Y K]
M R M C Input-file reader Options analyzer
\ \
Internal-data storage: Runtime settings
o3 @ Sparse matrices, etc. ‘ ‘
€23 ‘ : Commands
3 32 | Common model checking o
o 2 =]
—~ — 3
g s 5
32 5 2o ‘5”] PRCTL
= 1
i Q|5 S| 3 PCTL
£ o = 3
QO3 o =
c293 = 5
o =3
2858 | dls ne m g CSRL
o e X = =) > =
2 Psa3 0| = HE Q e
853553 Q) |O Ol5 5 8 CSL
S e 3 | o

Y
[State probabilities J

Figure 2.1: Tool architecture of MRMC

A sketch of the MRMC tool architecture is provided in Figixd. Below we refer to it
for illustration purposes when giving examples of MRMC itgwutputs and functionality.

http://www.mrmc-tool.org/

{loss} {goal}

Figure 2.2: The dice game: DMRM model

Example 1 Consider a dice with only four wedges that have numbg2s3 and4 imprinted

on them. Let the dice be biased in such a way that we get theebefentioned outcomes
with probabilities0.4 0.3, 0.2 and0.1 respectively. One can now play a simple game where
the game round consists of continuously tossing the digéwinining, if the outcome ig

and the accumulated outcome is frérto 50, or losing, if the outcome is.

A natural question rises: Is the probability to win this garaey. within100 tosses, larger
than0.5? The answer to such a question can be given if we represagdme as a DMRM
model and reformulate the question in terms of the PRCTIclogi

The required DMRM is provided in Figur2.2. Here we have five states where state
represents the moment at which the dice is tossed and stata2 fto 5 correspond to the
dice outcomes fror to 4. These outcomes are transformed into state rewards ancglac
next to the states in the square braces. lOssandgoalstates are marked by labels enclosed
in the curly braces. Thegoal label corresponds to the outcoreand in order to win, by
reaching this state, the accumulated outcome has to berwitand 50.

The measure-of-interest can be formulated &s; 5 (ﬁoss U{gégf} goal). The given

property asserts that the probability to reach the:! state, without visiting théoss state
within 199 time steps, and the accumulated reward being ffota 50, is larger than0.5.
Notice that we have the upper time bourid that in the model corresponds t®0 dice
tosses.

On the start up, MRMC accepts several command-line opteags,that specify the model
(CTMC, DTMC, etc.), and expects five input files:itea —file describing the probability or
rate matrix of a DTMC, CTMC or an MRM, dab - file indicating the state labeling with
atomic propositions, a&tmdpi — file describing the rate matrix and the transition labeling
of a CTMDPI, arew -—file specifying the state-reward structure of an MRM, ancbwi
— file specifying the impulse-reward structure of an MRM. Rdirsupported model types
either the.tra or.ctmdpi and.lab files are compulsory, whereagw and.rewi
files are used only for specifying reward models.

Example 2 The DMRM model of Examplecan be seen as a superposition of three parts:
() the DTMC given by state-transitions and correspondingritigtions, (ii) the labeling

function that maps sets of labels to the DTMC states, @ndthe state-reward function
that maps reward values to the DTMC states. In order to be wadd MRMC, all these
three parts have to be transformed into the MRMC input fileeh& translation is given in
Table2.1

Thegame.tra file contains an intuitive text-based representation oféC, i.e. its
state transitions and corresponding probabilities. Tane.lab file contains label decla-
rations and maps sets of labels to the states of DTMC. Silptlaegame.rew file contains
mapping of the state rewards to the model states.

In order to start MRMC with the given input files the followiogmmand should be ex-
ecuted in a shell environment such egh bashon Linux (Mac OS X), oDos command
prompton Microsoft Windows:

MRMC/bin> mrmc dmrm game.tra game.lab game.rewi

When executed, this command starts MRMC by triggering akweéiits components, see
Figure 2.1. First “Options analyzer” parses the command-line argurtgersetting up the
DMRM model as the current one in the “Runtime settings” compoaaatinvoking “Input-
file reader” for processing the filegame.tragame.laband game.rewi At this stage neces-
sary data structures for storing the probability matrix gyeovided by “Internal-data stor-
age”, labeling and state rewards, which then become acbés#irough “Runtime settings”.
Once MRMC is started it produces the following output:

| Markov Reward Model Checker |

| MRMC version 1.3 |
| Copyright (C) The University of Twente, 2004-2007. |

| Copyright (C) RWTH-Aachen, 2006-2008. [

| Authors: [
| Ivan S. Zapreev (since 2004), Christina Jansen (since 2007), |
| David N. Jansen (since 2007), E. Moritz Hahn (since 2007), |

| Sven Johr (2006-2007), Tim Kemna (2005-2006), [

| Maneesh Khattri (2004-2005) |

| MRMC is distributed under the GPL conditions |

| (GPL stands for GNU General Public License) |

| The product comes with ABSOLUTELY NO WARRANTY. |
| This is a free software, and you are welcome to redistribute it. |

Logic = PRCTL

Loading the 'simple_dmrm_dice.tra’ file, please wait.
States=5, Transitions=8

Loading the 'simple_dmrm_dice.lab’ file, please wait.
Loading the 'simple_dmrm_dice.rew’ file, please wait.
The Occupied Space is 992 Bytes.

Type ’help’ to get help.

>>

where, first the MRMC logo is printed, then some general mfdion about the accepted

model and finally the MRMC shell invitation sigr. After that the tool is up and running,
ready to accept user commands.

Once started, MRMC provides a shell-like environment¢mmand promptwvhere the
user can specify the tool run-time options, such as a usert#icalgorithms, and the prop-
erties that have to be verified. For every verification probtlee tool outputs a set of states

that satisfy the given property and, if applicable, thedisprobabilities. Note that the com-
plete list of MRMC command-line options and command-prosghmands can be found
in Chapter6.

game.tra game.lab game.rew
STATES 5 #DECLARATION | 21
TRANSITIONS 8| loss goal 32
1204 #END 43
1303 2 loss 54
140.2 5 goal

150.1

211.0

311.0

411.0

511.0

Table 2.1: The dice game: MRMC input files

Example 3 Extending Exampl&, we can answer to the model checking problem of Exam-
ple 1, by executing the following command in the MRMC command jpirom

>>P{>0.5}] !loss U[0,199][5,50] goal]

$RESULT: (0.0647999, 0.0000000, 0.0959998, 0.1199998, 0. 1199997)
$STATE: { }

The Total Elapsed Model-Checking Time is 45 milli sec(s).

>>

By doing so we invoke the “Command-prompt interpreter” comgnt, cf. Figure2.1, that

processes all commands of the MRMC shell. This componeng tRuntime settings” de-
termines which model-checking engine is needed, in thisitas"PRCTL model checking”,
and then invokes it. As a result, we get two outputs: a prdligbiectorSRESULT and a set
of statessSTATE The former corresponds to the list of probabilities to sitithe formula
—loss U 064l when starting in the first, second, etc. states. The latteristhe set of

[5,50]
states in which the formulB. 5 (—Joss U{g;g}gl goal) is satisfied.

Since, when playing the dice game, we always start in dtate. we first toss the dice,
from the vectoSRESULTwe can see that the probability to win the game withio dice
tosses is judd.0647999 and thus indeed is not in the se$STATE

Since we already have a good idea of how MRMC works, we proeg#d concrete
information on the tool installation process. The dice egknfrom above will be referenced
in the upcoming chapters to illustrate the tool functiotyali

3 Building MRMC

This chapter is devoted to the installing process of MRMC ahdelated components.
MRMC can be freely downloaded from:

http://www.mrmc-tool.org/

Further, we first explain how to build MRMC on the supportedtfgrms. After that we
proceed with a section on getting and configuring the optiMRMC test suite, which is
useful for internal, functional and performance testingheftool.

3.1 Building MRMC from source code

To compile MRMC from sources GNU Make as well as GCC is neededitionally, com-
pilation under Windows requires Cygwin.

¢ http://gcc.gnu.org/

¢ http://www.cygwin.com/

3.1.1 Getting & Installing GSL

Since MRMC v1.3, the tool requires the GNU Scientific LibrdfySL), a collection of
numerical routines for scientific computing. The currensi@n of GSL is available at:

ftp://ftp.gnu.org/pub/gnu/gsl

GSL follows the standard GNU installation procedure. Breftalling instructions can be
found here, for further information on this topic ségfSFO7h

Note that, in order to install GSL on Windows you are first riegghto install Cygwin and
then to perform GSL installation procedure using the Cygshell. For more details see
Section3.1.3

First, unpack the GSL distribution file into the location @iy choice, enter that directory
and prepare the Makefiles by using t@nfigurecommand. Afterwords rumaketo compile
andmake instalto install the library. On most systems the latter will reguioot privileges.

$ tar -xf gsl-1.9.tar.gz
$ cd gsl-1.9

$./configure

$ make

$ sudo make install

Further we assume that GSL is properly installed on youesyst

http://www.mrmc-tool.org/
http://gcc.gnu.org/
http://www.cygwin.com/
ftp://ftp.gnu.org/pub/gnu/gsl

3.1.2 Linux

To build MRMC on Linux unpack the distribution into the loat of your choice. We define
MRMC_HOME_DIB be the absolute name of the MRMC distribution folder. ARMC
is unpacked, enter this directory and mnmake all

$ unzip mrmc_src_v1.3.zip
$ cd MRMC_HOME_DIR
$ make all

After that you will find the MRMC executable in the fold8fRMC_HOME_DIR/bin
In order to clean up distribution, i.e. to remove all objelediand pre-compiled binaries
runmake clean

3.1.3 Windows
To build MRMC on Windows first download and install Cygwin

http://www.cygwin.com

Make sure that 'gcc’, 'make’, 'yacc’ ('bison’) and 'lex’ (‘#x’) modules are included. Ensure
that the absolute name of the MRMC distribution folder doatscontain spaces.

In the next step install the GNU Scientific Library (GSL) asciged in Sectiol.1.1and
then proceed with the installation steps specified in Se&id.2 Ensure that all commands
are executed within the Cygwin shell.

3.1.4 Mac OS X
To build MRMC on Mac OS use the instructions of Sectih.2

3.1.5 Getting & Using Splint

Some source files are annotated for the static checker gpkethttp://www.splint.org,.
Splint checks a. 0. for null pointer assignments, memorkdeand safety o#define
macros. Splint can be downloaded from its homepage andledstccording to the instruc-
tions found there.

Splint can be used as follows:

Check a single source file: To check, e. g., bitset.c (currently the only annotated:file)

$ cd MRMC_HOME_DIR/obj
$ make lint-bitset

One has to rumake lint- filenamein the directoryMRMC_HOME_DIR/objin-
dependently from the directory where the source file is kdtat

Check all source files: Currently, this will incur a lot of error messages, as not gt
sources have been annotated.

10

http://www.cygwin.com
http://www.splint.org

$ cd MRMC_HOME_DIR
$ make lint

Check the test suite sources: Internal tests (see below) also have source files. As the
test suite is not packaged together with the source installahere is an independent
way to check the test suite sources:

$ cd MRMC_HOME_DIR/test
$./test_all.sh -lint -internal

will run splint on all annotated internal tests, compile soeirces and run the internal
tests.

3.2 Getting & Installing Test Suite

The test-suite allows to perform internal, functional aed@rmance testing of MRMC. It is
not distributed with the MRMC sources, but it can be freelywdtmaded from:

http://www.mrmc-tool.org/

After downloading theMRM@est v1.3.zip file, unpack it in the MRMC folder. As
a result a directorfRMGHOMEDIR/MRMCtest _v1.3/ will be created. Further, for
brevity, we assume that you rename it IMB&MCHOMEDIR/test/

3.2.1 Configuring tests
The main configuration parameters of the MRMC test-suitebeaset in the
MRMCHOMEDIR/test/settings.cfg

configuration script. These parameters are subdividedwugroups:

General settings
¢ MRMGHOMEDIR - The absolute name of the MRMC distribution directory.

e MRMGCThe location of the MRMC binary. This setting does not neeldd changed if
MRMCHOMEDIR is set correctly. Note that, when running MRMC on Windows, th
binary name should be settarmc.exe .

e VALGRINGHOME The absolute path to thealgrind executable ABFH"04].
It is only required if tests are run under thelgrind option. Note that in this
case MRMC should be first recompiled with #0 -ggdb -g options, which are
available iInMRMGHOMEDIR/makefile.def

e VALGRINDLOGFILES _DIR - The absolute name of the folder for storilog filed
produced byalgrind

¢ EXTRAVALGRINDPARAM Extra options fowvalgrind

11

http://www.mrmc-tool.org/

Performance-test settings The performance part of the test suite was developed for
Linux platform only. It is not proven to work under WindowsMac OS X.

e PRISM- The absolute path of the PRISMIIP0Z command line executable. This
setting is required for generating performance-test ngdel

e TMPDIR- This setting should point to a local directory, which wi# bsed for storing
generated models.

e YMER The absolute path of the Ymerqu05K command line executalie
e VASTAJAR - The absolute path of the VESTAJA04] jar file?.

¢ NUMBEROF.PERFORMANCEEPETITIONS - The number of times every perfor-
mance test is going to be repeated. If set to zero, no “elapsed statistics is col-
lected. At the same time the functional testing and the mgrueage statistics are
collected only for théumping sub suite.

e MILLISECONDS- The time units of the “elapsed-time” plots.
e KILOBYTES- The data units of the “memory-usage” plots.
e CONFUNIT The data units of the “confidence” pléts

¢ PERFORMANCEEST. TIMEOUTSECS- The timeout (in seconds) for each perfor-
mance test invocation.

For more information on the MRMC test suite, we refer to Chaptand also to the test-suite
manual:MRMC_HOME_DIR/test/TS_Manual.pdf

2This setting is required only for tremulation sub suite.

12

4 MRMC'’s Input Files

As already mentioned in Chapt2eMRMC expects five input files: dra — file describing
the probability or rate matrix of a DTMC, CTMC or an MRM,.lab - file indicating the
state labeling with atomic propositions,a@mdpi - file describing the rate matrix and the
transition labeling of a CTMDPI, aew - file specifying the state-reward structure, and a
rewi —file specifying the impulse-reward structure. For all supgd model types either
the.tra orthe.ctmdpi and.lab files are compulsory, whereagw and.rewi files
are used only for specifying reward models.

Here we would like to give a formal definition of the structtine input files should meet.
Please note, tha?lRMC does not check if the input is in a proper format and thus
may show malicious behavior in case of a wrong inputFor examples of MRMC's input
files see Table€.1 of Chapter2. Additionally, examples for CTMDPIs can be found in
AppendixA.

4.1 The .tra File Format

The.tra file contains the rate (probability) matrix:

File structure:

Tra_File = Header Body
Header = 'STATES’ <number of states> \n
"TRANSITIONS’ <number of transitions> \n
<from state> <to state> <rate/probability> \n
Body
| <from state> <to state> <rate/probability> \n

Body

The header defines the number of states and transitions gystem. The body contains
transitions in the format:

<from state> <to state> <rate/probability>

Note that, “from state” and “to state” should be given as redtmumbers, the rates/probabil-
ities as real numbers. State indexes start witnd transitions must be given in ascending
order of first row and then column index.

4.2 The .lab File Format

The.lab file contains the labeling of states with atomic proposgion

13

File structure:

Lab_File = Declaration Body
Declaration = '#DECLARATION’ \n
Atomic_Prop_List \n
'#END’ \n
Body = <state> Atomic_Prop_List \n Body
| <state> Atomic_Prop_List \n
Atomic_Prop_List = <atomic proposition> Atomic_Prop_Lis t

| <atomic proposition>

In the declaration section all needed atomic propositioanstrne defined. We allow quite
complicated atomic propositions, namely the ones thatdifoéHowing regular expression:

<atomic proposition> = {letl{alnum} *
let = [La-zA-Z]
alnum = [La-zA-Z0-9<> ~ *+-7]

The propositions are assigned to states in the followingmaan

<state> Atomic_Prop_List

4.3 The .ctmdpi File Format

The.ctmdpi file contains the rate matrix and additionally the transitimbeling to distin-
guish between different non-deterministic choices. Tleef@irmat for the transition descrip-
tions are given below.

File structure:

Ctmdpi_File
Header

Header Body_Int_Nondet
'STATES’ <number of states> \n
'‘#DECLARATION’ \n

Atomic_Prop_List \n
'#END’ \n

<from state> <label> \n
* <to state> <rate> \n
{ * <to state> <rate> } \n
Body_Int_Nondet

| <from state> <label> \n
* <to state> <rate> \n
{ * <to state> <rate> } \n

Body_Int_Nondet

The header defines the number of states the MDP contains basnatl needed transition
labels, which are used to label the non-deterministic dwtss

The body contains the transitions and transition labelgreffrom state” is the state the
the selection starts from and “label” is the external chdihzg was made. After this line, a
number of lines follow, which list the states “to state” orma@o to with rate “rate”.

14

Note that, “from state” and “to state” should be given as retaumbers, the rates/proba-
bilities as real numbers. State indexes start wieimd transitions must be given in ascending
order of first row and then column index.

4.4 The .rew File Format

The.rew file contains the state-reward definitions.

File structure:

Rew_File = Body
Body = <state> <reward> \n Body
| <state> <reward> \n
Note that, only natural reward values are allowed, theesdowy rational rewards must (and
can) be transferred into natural numbers first.
4.5 The .rewi File Format

The.rewi file contains the impulse-reward definitions.

File structure:

Rewi_File = Header Body
Header = "TRANSITIONS’ <number of transitions> \n
Body = <from state> <to state> <reward> \n Body

| <from state> <to state> <reward> \n

In the header the number of transitions is given, the bodyatos reward to transition
assignments in the format:

<from state> <to state> <reward>

Note that, “from state” and “to state” should be given as ratnumbers. Furthermore, like
for the.rew file only natural reward values are allowed.

4.6 Getting MRMC models

Specifying a whole model in the formats explained above isveoy intuitive especially
for large systems. Therefore in this section we introduae twols — namely PRISM and
PEPA — that offer a clearly defined language for designingetsodBoth of them feature the
automatic generation of MRMC input files.

15

4.6.1 PRISM

PRISM [KNP08H stands for Probabilistic Symbolic Model Checker and isgaieveloped
at the University of Birmingham, United Kingdom, for the &rsas of probabilistic systems.

MRMC models can be generated from PRISM models starting framool version 3.0.
PRISM can be downloaded from:

http://www.prismmodelchecker.org/download.php

The model-generation options of PRISM are listed here andlso be obtained by running
prism -help

e —exportmrmc - Use MRMC format when exporting matrices/oesitabels.

e —exportlabels<file> - Export the list of labels and satisfying states téad -file.
e —exporttrans<file> - Export the transition matrix to ara -file.

e —exportstaterewardsfile> - Export the state rewards vector toraw -file.

e —exporttransrewardsfile> - Export the transition rewards matrix tare@wi -file.

Example 4 Consider Exampl@ of Chapter2. The DMRM model given in Figur22 can
be specified as the following PRISM model:

File: game.pm ------------
probabilistic

module Dice

dice_state : [1..5] init 1;

[] dice_state=1 -> 0.4:(dice_state’=2) + 0.3:(dice_state '=3)
+ 0.2:(dice_state’=4) + 0.1:(dice_state’=5);

[] dice_state=2 -> 1.0:(dice_state’'=1);

[] dice_state=3 -> 1.0:(dice_state’'=1);

[] dice_state=4 -> 1.0:(dice_state’=1);

[] dice_state=5 -> 1.0:(dice_state’'=1);

endmodule

rewards
dice_state=2 :
dice_state=3 :
dice_state=4 :
dice_state=5 :
endrewards

PR

16

http://www.prismmodelchecker.org/download.php

File: game.pctl ---------- e

label "loss"
label "goal"

dice_state=2;
dice_state=5;

In the filegame.pm the DMRM model is specified, whereas thedgdene.pctl contains
only the state labellings.
To generate the MRMC model with PRISM, run the following canun

$ prism game.pm game.pctl -exportmrmc -exportlabels
game.lab -exporttrans game.tra -exportstaterewards game rew

which produces thetra , .lab and.rew input files shown in Tabl@.1 of Chapter2.
These files can be immediately consumed by MRMC.

For more information on generating MRMC models using PRI®® [ENP08H.

4.6.2 Performance Evaluation Process Algebra (PEPA)

Performance Evaluation Process Algebra (PERA)9E] is an algebraic process-oriented
language for modeling concurrent systems. The procesbralge being mainly developed
in Laboratory for Foundations of Computer Science, Unitgid Edinburgh, United King-
dom. Performance of a PEPA model can be evaluated by demdvidgnalyzing the under-
lying CTMC. PEPA modelers are provided with the PEPA Worldbeji G0,

http://www.dcs.ed.ac.uk/pepa/tools/

an Eclipse-platformfou07 application for managing the models. One of the PEPA Work-
bench features is an Eclipse wizard for exporting PEPA nwoneb the MRMC input-file
formats.

17

http://www.dcs.ed.ac.uk/pepa/tools/

5 Running MRMC

In order to start MRMC open a shell environment such as cslasin bn Linux and Mac OS
X, or Dos command prompt on Microsoft Windows and switctvi@ MGHOMEDIR.

5.1 Command line options
Starting MRMC without parameters

e for Linux/Max OS: $./bin/mrmc

e for Windows: $./bin/mrmc.exe

will yield the following output:

ERROR: The <model> parameter is undefined.

Usage: mrmc <model> <options> <.tra file> <.ctmdpi file> <. lab file> <.rew file>
<.rewi file>
<model> - could be one of {ctmc, dtmc, dmrm, cmrm, ctmdpi}.
<options> - could be one of {-ilump, -flump}, optional.
<.tra file> - is the file with the matrix of transitions
(for DMRM/CMRM, DTMC/CTMC).
<.ctmdpi file> - is the file with the transition matrix and tr ansition labels
(for CTMDRPI).
<.lab file> - contains labeling.
<.rew file> - contains state rewards (for DMRM/CMRM).
<.rewi file> - contains impulse rewards (for CMRM, optional).
Note: In the '.tra’ and '.ctmdpi’ file transitions should be ordered by rows and columns!

The model -parameter should be set to one of the supported models, n&nd1C,
DTMC, CMRM, DMRM and CTMDPI. Remember that the latter modehi CTMDP with
internal non-determinism, see Appendix

Options-ilump and-flump enable formula- independent and dependent lumping cor-
respondingly. For more information on lumping, please aerseading KKZJO7].

We expect users to provide MRMC with the input files that maetformats specified
in Chapter4, for illustration see Exampl2 on paget. Note that, the order of input files,
options and other parameters does not have to be strict.

A complete list of all MRMC runtime commands, sorted by thefiliation to different
model checking aspects, can be found in the next chapter.

18

6 MRMC run-time Commands

Once started, MRMC provides a shell-like environmentdmmand prompivhere the user
can use the tool run-time commands to set for example the fusertin algorithms, or
specify the properties that have to be verified. Further welisi and discuss MRMC's
command-prompt commands sorted by their affiliation to tlieerént aspects of model
checking.

6.1 Basic Commands

6.1.1 help

When typinghelp in MRMC’s command prompt, information on general commargds i
displayed:

quit - exit the program.

help HT - display a help info on a given topic.

print - print run-time settings.

print tree - print the formula tree with the results and suppl ementary
information.

$RESULTI[N] - access the computed results of U, X, L, S, E, C, Y o perators
by a state index.

$STATE[N] - access the state-formula satisfiability set by a state
index.

set * - Where = is one of the following:

print L - Turn on/off most of the resulting output, see

'$SRESULTII]" and '$STATE[I] commands.
simulation L - Turn on/off the simulation engine.
Here:

HT is one of {logic, simulation, rewards, common}.
L is one of {on, off}.
N is a natural number.

First we are going to explain the basic commands listed is lielp output, the more
involved ones are covered in the subsequent sections.

quit - Exits the program.

help HT - For some terms a specialized help is available. See theipkise provided
for help logic , help simulation ,help rewards andhelp common below.

19

print tree — Prints the tree of the last model-checked formula withra@rimediate
results.

Note: The next two commands provide different output in case afgithie discrete event
simulation engine. For more details we refer to Secion

SRESULT[N] - Allows to access the probability of satisfying the modetcked
formula in stateN.

$STATE[N] - Displays whether statésatisfies the model-checked formula, i. e. for a
state fulfilling the formula the result IBRUE otherwiseFALSE

6.1.2 help logic

The commanthelp logic prints the formal syntax, given iBxtended Backus-Naur Form
(EBNF), of the logic formulae accepted by MRMC. The output dependthe value of the
logic parameter with which MRMC was invoked. Figurés through6.4 show outputs
for all available logics. These logics allow to specify mbdeecking properties, as itis done
in Example3 on page8. Additional information on the logic semantics and examdes
provided in Chapter.

6.1.3 help simulation

Thehelp simulation command provides the user with all options related to MRMC'’s
simulation engine:

set * - Where = is one of the following:
sim_type ST - Sets the simulation type, \ie{} either
do simulation for all initial states
or just one.
initial_state N - Sets the initial state for the simulation

type ST == one.
sim_method_steady MS - Sets the simulation mode for the
steady-state (long-run) operator.

reg_method_steady RM - Sets the mode for the regeneration me thod when
model checking the steady-state operator.

gen_conf R - The confidence level for simulation.

indiff_width R - The indifference-region width.

max_sample_size N - The maximum sample size.

min_sample_size N - The minimum sample size.

sample_size step N - The sample-size increase step.

sample_size_step_type SS - Sets the sample-size step type.
sim_method_disc RNG - The random-number generator for a
discrete distribution.
sim_method_exp RNG - The random-number generator for an
exponential distribution
(time-interval until, CSL).

For the simulation of unbounded until and the pure simulatio n of
steady-state (long-run) operator:
max_sim_depth N - The maximum simulation depth.

20

CONST = ff | tt CONST = ff | tt

P{ OP R }[PFL]
L{ OP R }[SFL]

P{ OP R }[PFL]
E[R, R] [SFL]

SFL = CONST SFL = CONST
| LABEL LABEL
| ' SFL I SFL
| SFL && SFL SFL && SFL
| SFL || SFL SFL || SFL
| (SFL) (SFL)
|
|

P{ OP R }[PFL]

S{ OP R }[SFL]

= X SFL PFL
| SFL U SFL
| XI R, R] SFL
| SFL U[R, R] SFL

Figure 6.3: CSL formulae

21

P{ OP R }[PFL]
S{ OP R }[SFL]
X SFL

SFL U SFL

X[R, R] SFL

SFL U[R, R] SFL
X [R, R][R, R] SFL
SFL U[R, R][R, R]
SFL

PFL = X SFL E [Nl R, R] [SFL]
| SFL U SFL C [Nl R, R] [SFL]
| SFL Ul N, N] SFL Y [Nl R, R] [SFL]

PFL = X SFL
| SFL U SFL
| SFL Ul N, N][R, R]
SFL
Figure 6.1: PCTL formulae Figure 6.2: PRCTL formulae

CONST = ff | tt CONST = ff | tt

SFL = CONST SFL = CONST
| LABEL | LABEL
| I SFL | I SFL
| SFL && SFL | SFL && SFL
| SFL || SFL | SFL || SFL
| (SFL) | (SFL)
| |
| |

Figure 6.4: CSRL formulae

min_sim_depth N - The minimum simulation depth.
sim_depth_step N - The simulation-depth increase step.
bscc_dim_multiplier N - The BSCC dimension multiplier for t he
sample-based regeneration state choice.
Here:
RNG is one of {app_crypt, ciardo, prism, ymer, gsl_ranlux,
gsl_Ifg, gsl_taus}.
ST is one of {one, all}.
SS is one of {auto, manual}.
MS is one of {pure, hybrid}.
RM is one of {pure_reg, heuristic}.
R is a real value.
N is a natural number.

For more information on the simulation options read Secfiéh3 For details on the avail-
ableRandom Number Generators (RNG@sad Chapte8.

6.1.4 help rewards
The commandhelp rewards vyields the following output:

set x - Where = is one of the following:
method_until_rewards MU - Method for time-reward-bounded until
formula.
w R - The probability threshold for

uniformization
Qureshi-Sanders.
d R - The discretization factor for
discretization Tijms-Veldman.
Here:

MU is one of { uniformization_sericola,
uniformization_qureshi_sanders,
discretization_tijms_veldman }.

R is a real value.

For more information on reward options listed above, werrefé&ectiont.2.4

6.1.5 help common

Thehelp common command provides the user with information concerningonsj re-
lated to all model-checking procedures and numerical nusthBor detailed information on
these options, see Sectioh®.1and6.2.2

set x - Where = is one of the following:

ssd L - Turn on/off the steady-state detection for time
bounded until (CTMC model).

error_bound R - Error Bound for all iterative methods.

max_iter N - Number of Max lIterations for all iterative
methods.

overflow R - Overflow for the Fox-Glynn algorithm.

underflow R - Underflow for the Fox-Glynn algorithm.

method_path M - Method for path formulas.

method_steady M - Method for steady state formulas.
method _bscc MB - Method for BSCC search.

22

Here:
L is one of {on, off}.
R is a real value.
M is one of {gauss_jacobi, gauss_seidel}.
MB is one of {recursive, non_recursive}.

6.1.6 print

Theprint command displays the current status of all relevant rure-gettings. A sample
output may look as follows:

---General settings:

Logic = PCTL
Formula ind. lumping = OFF
Formula dep. lumping =

M. C. simulation =

Method Path Gauss-Seidel

oo
n
m T

Method Steady Gauss-Seidel
Method BSCC = Recursive
Results printing = ON
---Numerical methods:
-lterative solvers:
Error Bound = 1.000000e-06
Max lIterations = 1000000

A complete list of all runtime options and their correspamckto theprint command
output can be found in Sectigh2 Below we describe the parameters listed in the output
above:

e General settings
— Logic - Corresponds to thiegic parameter MRMC was invoked with (cf.

Chapter).

— Formula ind. lumping — Is related to the optioflump MRMC was
invoked with (cf. Chapteb).

— Formula dep. lumping — Is related to the optioflump MRMC was
invoked with (cf. Chapteb).

— M. C. simulation — Corresponds to the commaselt simulation L
(cf. Section6.2.3. With simulation enabled, the output of theint command
Is extended.

— Method Path - Corresponds to the commasdt method _path M (cf.
Section6.2.7).

— Method Steady - Corresponds to the commagsedt method _steady M
(cf. Section6.2.7).

— Method BSCC — Corresponds to the commasdt method _bscc MB (cf.
Section6.2.7).

— Results printing — Reports whether model checking results are printed.
In order to manage this option, uset print L (cf. Section6.2.1).

23

e Numerical methods

— Error Bound - Corresponds to the commansdt error _bound R (cf.
Section6.2.9.

— Max lIterations — Corresponds to the commasdt max _iter N (cf.
Section6.2.2).

Note that, depending on specific run-time settings, theuwdwptheprint command may
be extended with additional information. For example, wtensimulation engine is turned
on, the user is provided with information about its paramsess well.

6.2 Advanced Commands

In this section, we list the remaining MRMC commands thaialto influence its run-time
behavior. Every command will be given in the following forima

<command name (relatedprint output) — short description.

6.2.1 Common

Let us consider the MRMC commands responsible for manadiagyeneral behavior of
the tool. When displaying the current settings with gftent command, all commands
described here can be found in the secii@neral settings . Below we havel €
{on, off }andMe {gauss _jacobi, gauss _seidel }.

set print L (Results printing) — Turns on/off printing of model-checking results
that follows the formula verification procedure.

set ssd L (Steady-state detection) — Turns on/off the steady-state detection for
the time-bounded until operator (CTMC/CMRM).

set method _path M (Method Path) — Sets the iterative method for solving a
system of linear equations when computing reachabilitypabdities for model checking of
an unbounded-until formula (DTMC/DMRM and CTMC/CMRM).

set method _steady M (Method Steady) — Sets the iterative method for solving
a system of linear equations when computing steady-statepilities of BSCCS The lat-
ter happens when model checking the steady-state, longrdmunbounded-until formulas
(DTMC/DMRM and CTMC/CMRM).

1Bottom Strongly Connected Components

24

set method _bscc MB (Method BSCC) — Sets the method used when searching
for bottom strongly connected components. Helfgédefines the BSCCs search implemen-
tation based on:

e recursive — Recursive functions.
e non _recursive — Cycle iterations.

Generally, thaecursive method is faster, but can run into a segmentation fault chuse
by an insufficient stack size (it is likely to happen for largedels). Thenon _recursive
method does not use recursive function calls, and thus swbelstack exhaustion.

6.2.2 Numerical Methods

In this section we list commands that allow to manage the migadeengine of MRMC. The
list of corresponding parameters can be found inNbenerical Methods section of the
print command output.

set error _bound R (iterative solvers/Error Bound) — Sets the error bound for
all iterative methods.

set max _iter N (Iterative solvers/Max lterations) — Sets the maximum number
of iterations for all iterative methods.

set overflow R (Fox-Glynn algorithm/Overflow) —— Sets the overflow threshold
for the Fox-Glynn algorithmAfG&4.

set underflow R (Fox-Glynn algorithm/Underflow) — Sets the underflow thresh-
old for the Fox-Glynn algorithm.

6.2.3 Simulation

In this section we list commands related to MRMC's disc@tent simulation engine. At
present simulation can be used when model checking unbdwnad, time-bounded until,
and steady-state operators on CTMC/CMRM models. We do mppatinested simulation.
Therefore, given a formula we only apply simulation to thepi@priate) sub formulas that
have the closest location to the formula-tree root. Thefeuulas that are located below
are verified using numerical methods.

Example 5 Consider the formul®-,, (V' U ®) A S.,, (Ps,, (V' U @")) with the corre-
sponding formula tree depicted in Figuses. The formulais a conjunction of the unbounded-
until formulaP-,, (I U ®) and the steady-state formuta,, (P~,, (¥’ U ®')). The latter
one has an unbounded-until sub formula. In the given sitmalIRMC applies numeri-
cal methods to verify sub formul.,, (V' U ¢’). Then the unbounded-until sub formula
P-,, (¥ U @) and steady-state sub formufa,, (P~,, (I’ U ")) are model checked using
simulations.

25

Figure 6.5: Formulatred®—,, (V U @) A S.,, (Psp, (¥ U @)

With simulation on, therint command output is extended with parameters of the sim-
ulation engine, cf. Examplé of Chapter8. These options are displayed in thMonte

Carlo Simulation section. Below, we assume that {on, off } andNe N.
set simulation L (M. C. Simulation) — Turns MRMC's simulation engine
on/off. The status of simulation engine is reported underGeneral settings sub

point of theprint command output.

set sim _type ST (Simulation type) — Sets the simulation typ8T € {one,
all }. Unlike in numerical model checking, where verification @ for all initial sates at
once, in model checking via simulation we can either do \eaiion for one initial state or
all initial states. The former can be set by using ské initial _state N command,
described below.

set initial _state N (Sim. initial state) — Sets the state for which the validity
of the formula is going to be verified.

set sim _method _steady MS (Sim. steady state) — Sets the simulation mode
for the steady-state/long-run operator. H&&is one of

e pure — Model checking only by discrete simulation.

e hybrid - Probabilities of reaching BSCCs are computed numerically

set reg _method _steady RM (Reg. method steady) — Sets the regeneration
method for the steady-state operator. H&®ls one of

e pure _reg — Random choice of the regeneration state.

e heuristic — Use heuristic to choose a frequently visited regeneratiate.
set gen _conf R (Confidencelevel) — Sets the confidence level (probability) with

which we can trust the model-checking results. H&e, [0.25, 1.0]. Note that, this confi-
dence level is guaranteed only under a specific conditianghrexplained in Chaptes.

set indiff _width R (Indiff. reg. width) — Sets the width of the indifference
region, i. e. the maximum width of the confidence intervadg thill be considered. For more
details see Chapté&

26

set max _sample _size N (Maxsamplesize) — Setsthe maximum sample size,
I. e. the maximum number of independent traces to be coregider

set min _sample _size N (Min sample size) — Sets the minimum sample size,
i. €. the minimum number of independent traces to be corsider

set sample _size _step _type SS (Sample-size step type) — Sets the type
to determine the sample-size increment. H&®ijs one of

e auto — The sample size step is computed and dynamically set baseddlevant fac-
tors.

e manual — The sample size step is static and manually set.

set sample _size _step N (Sample-size step) — Sets the increment for the
sample-size, i.e. the number by which the number of obsensin the samples will be
increased, for sequential confidence intervals.

set sim _method _disc RNG (RNG discrete dist.) — Setsthe method of gener-
ating values for discrete random variables (cf. ChapteThis method is used for simulating
state transitions of embedded DTMCs. The Random Numberr@em&NGcan be one of
the following:

e app _crypt — Combined linear congruential generator.

e ciardo - Improved linear congruential generator.

e prism - Linear congruential generator, similar to the RNG usedRIS®.
e ymer — Mersenne Twister, similar to the RNG used in Ymer.

e gsl _ranlux - Ranlux generator, GSL Library.

e gsl Ifg - Lagged Fibonacci generator, GSL Library.

e gsl _taus - Tausworthe generator, GSL Library.
set sim _method _.exp RNG (RNG exponential dist.) — Sets the RNG for gen-
erating exponentially distributed random variables. Thethod is used for simulating ex-

ponentially distributed state-exit times. HE8IG< { app -crypt, ciardo, prism,
ymer, gsl _ranlux, gsl fg, gsl _taus }.

Note: The following commands are used for managing options spdoifthe unbounded-
until operator.

set max _sim _depth N (Max simulation depth) — Sets the max. simulation
depth, i. e. the maximum number of steps in every simulatéd pa

27

set min _sim _depth N (Min simulation depth) — Sets the min. simulation
depth, i. e. the minimum number of steps in every simulated. pa

set sim _depth _step N (Simulation-depth step) — Sets the increment for the
simulation-depth, i. e. the number of steps by which the &tran depth will be increased.

set bscc _dim multiplier N (BSCC dim. multiplier) — Sets the multiplier
for the heuristic regeneration method. As the multipli@r@ases the heuristic regeneration
state choice os more likely to produce better results atxperese of runtime.

6.2.4 Rewards

set method _until _rewards MU (Method Until Rewards) — Defines the
method, that will be used for CSRL model checking of time- aedard-bounded until
formulae. HereMUis one of:

e uniformization _qureshi _sanders - Uniformization Qureshi-Sander959q
e discretization tijms _veldman - Discretization Tijms-VeldmanI[\V0(]
e uniformization _sericola - Not supported

set w R (Probability threshold) — Sets the path probability bound for Qureshi &
Sanders uniformization algorithm, i. e. only paths withhpptobability greater or equal to
the bound are considered significant relative to the salutio

set d R (Discretization factor) — Sets the discretization factor for time interval and
accumulated rewards in the discretization algorithm byn$ig Veldman.

28

[/ Property Specification with
Temporal Logics

Model checking is the process of checking whether a givenansatisfies a given logical
formula. As MRMC is a probabilistic model checker, it supggahe common logics for
specification of probabilistic properties, namely PCTL,(AR, CSL and CSRL. In this
chapter all the formulae accepted by MRMC will be introduoadhe basis of EBNF. For a
property specification example, see Exantpten pageB or Examples’ and8 of Section8.

PCTL and PRCTL as well as CSL and CSRL (cf. Sectoh.? share a set of common
formulae. Every logic only extends the set of these formuNae that in most cases MRMC
performs global model checking, i.e. properties are veriireevery model state and the
states satisfying the given formula are reported. The dxmes model-checking by discrete
event simulation, there it is possible to check the validityhe formula in just one given
state.

7.1 Common-logic subset
The common formulae are the following:

Common Semantics:

CONST = ff | tt
SFL = CONST

| LABEL

| | SFL

| SFL && SFL

| SFL || SFL

| (SFL)

| P{ OP R }[PFL]
PFL = X SFL

| SFL U SFL

We distinguish between two types of formulae: state and fmathulae. A state formula
SFL is interpreted over the states of the considered systemhamefore results in a set of
states satisfied by the formula. A path form#B&L is interpreted over system paths and
thus for every given initial state results in a set of pattestimg in this state, that satisfy the
formula.

29

7.1.1 State formulae (SFL)

tt (True) —Is a constant satisfied in every state of a model.
ff (False) — Is a constant satisfied in none of model states.

LABEL (Atomic proposition) — Is satisfied in the states assigned with the given atomic
proposition (label).

ISFL (Negation) — Is satisfied in states, which do not fulf8FL.
SFL; && SFLy (Conjunction) - Is satisfied in states fulfilling botBFL, andSFL,.
SFL; || SFL 5 (Disjunction) - Is satisfied in states fulfillin§FL, or SFL,.

P{ OP R[PFL] (Probability measure) — For every state, it asserts that the prob-
ability measure of paths starting in the given state andfyatg PFL meets the probability
constraintOP R HereOPe {>, <, <, >} andR € Ry ;.

7.1.2 Path formulae (PFL)

X SFL (Next) — Asserts that on a path, starting in some stathe immediate successor
state ofs satisfies the formul&FL.

SFL; U SFLy (unbounded until) — Asserts that on a path there is a state satisfying
SFL, and all preceding states satiS¥L;.

7.2 PCTL

PCTL [HJ9] is an extension of CTL, which allows for probabilistic quifisation of prop-
erties. PCTL extends the set of common formulae by one statee path formula.

SFL = ...

| L{ OP R }[SFL]
PFL = ..

| SFL U[N, N] SFL

L{ OP R}[SFL] (Long-run) — Checks if the long-run probability for being in
states that fulfillSFL meet the probability constrai@P R

SFL; U[0, N] SFL 5 (Time-boundeduntil) — Asserts thaton a path there is a
state satisfyingFL,, such that this state is reached witiNnime steps (transitions) and all
preceding states on the path satiSHL;.

30

7.3 PRCTL

PRCTL [AHKO3] is the rewards extension of PCTL and therefore extends P@iilh. the
following formulae:

SFL = ..
| E[R, R] [SFL]
| EIN][R, R] [SFL]
| CINIl R, R] [SFL]
| YINIl R, R] [SFL]
PFL =

| SEL U[N, NJ[R, R] SFL

E[Ry, Ry] [SFL] —Assertsthatthe long-run expected reward rate per time-
unit for SFL states lies within the intervéR |, R] .

EIN R 1, Ry] [SFL] —Assertsthatthe expected reward ratSfiL-states
up to n transitions reached at tNeth epoch lies within the intervgl R, R, .

CINl R 1, Ro] [SFL] -Assertsthatthe instantaneous rewargfit states
at theN-th epoch lies within the intervfl R, R,].

YIN][R 1, Ro] [SFL] —Asserts thatthe expected accumulated reward rate
in SFL states until thé\-th transition lies within the intervdl R, Rs] .

SFL; U Ny, No]l R 1, Ry] SFLy (Time- & reward-interval until) — —
Asserts thaSFL, will be satisfied withinj € [N1, N,] steps, that all preceding states
satisfySFL,, and that the accumulated reward until reaching3ké,-state lies in the inter-
Val[R, Rs] .

7.4 CSL

CSL [BHHKO3] extends PCTL, but it works with the continuous time domaltere the
long-run operatol.{ OP R} is substituted with the steady-state operg&¢r OP R }
and the time-bounded next operator is added:

SFL = ..

| S{ OP R }[SFL]
PFL = ..

| X| R, R] SFL

S{ OP R}[SFL] (Steady-state) —Is similar to the long-run operator of PCTL,
cf. Section7.2

31

X[Ry, Ro] SFL (Time-bounded next) — Asserts that a transition is made to a
SFL state at some time pointe [Ry, R,].

7.5 CSRL
CSRL [CKKPO0E extends CSL with the following formulae:

PFL = ..
| X[R, R][R, R] SFL
| SFL U R, R][R, R] SFL

X[Ri, R][R 2, Ry] SFL (Time- & reward-interval next) — Asserts
the a transition can be made t&&L state at some time pointce [R;, R;"] such that
the accumulated reward until time potriies in the interval R, Ry’] .

SFL; U 0, R;][0, R 5] SFL 5 (Time-&reward-boundeduntil) —As-
serts thaSFL, is satisfied at some time instane [0, R ;] such that the accumulated
reward untilt lies in the interval 0, R ,], and that at all preceding time instai@EL,
holds.

32

8 Model Checking by Discrete Event
Simulations

Since MRMC v1.3, we support model-checking by means of dtscevent simulation. Be-
ing statistical in nature, such an approach cannot guardnétthe verification result i)0%
correct. Yet, it allows to bound the probability of genemgtan incorrect answer to a verifica-
tion problem, and, unlike the numerical approache®del checking using simulations does
not suffer from the state-space explosion. Note that, irctiveent implementation MRMC
operates on the pre-generated Markov chain which is coslplietaded into the computer’s
RAM?, therefore the state-space explosion is not eliminated.

Techniques for model checking CSL (PCTL) properties usingukations have already
been developed. For example iig07], later extended byY{S04, an algorithm based
on Monte Carlo simulation and hypothesis testing for nopl@sive stochastic discrete-
event systems is suggested. BVR04], the algorithms of YS0Z are extended to sta-
tistically verify black-box, deployed systems with a passbbserver. Both statistical ap-
proaches YS02, SVAO4] considered a sub-logic of CSL that excludes steady-state a
unbounded-reachability properties. Iofi04], the algorithm is extended to deal with a
subclass of unbounded-reachability problems Jw/{05] the statistical verification method
of [YS07] is extended to verify unbounded-reachability properté<SL (or PCTL) on
finite-state CTMCs (DTMCs), and SMCs. All these approachesyme an “on-the-fly”
model generation.

Contrary to the above mentioned techniques, our approdudsisd on Monte Carlo sim-
ulation and derivation of confidence intervals. We provitiistical algorithms for model
checking the most interesting CSL operators, such as st&aty, unbounded-reachability,
and time-interval reachability operators. In addition,enhmodel checking unbounded-
reachability or steady-state properties of CSL, we do satnuhs on the embedded DTMC.
The latter simplifies simulation runs and also lets the apoading techniques for model
checking of PCTL properties on DTMCs to be easily derived. dbenot consider nested
simulation, see Sectiof2.3on page25, and working with finite-state systems, we assume
that we can deduce the structure of the Markov chain. Foamtst we can detect Bottom
Strongly Connected Components (BSCCs) of the Markov chkor. more details on the
implemented algorithms, as well as comparison to the pusWoexisting simulation tech-
niques, consider reading Parof [Zap04].

Of course, the quality and speed of simulations heavily dép®n the quality and speed
of the underlyingandom number generator (RNGjor this reason seven different RNGs,
which vary in many aspects, are available in MRMC. The ondh thie best performance

INumerical model checking is carried out by symbolic and nticaémethods.
2Random access memory.

33

and reliability results are set to be used by default. Foxéeneled experimental comparison
of available RNG's, consider reading Appendix

The rest of this chapter is organized as follows. In Secfdnwe introduce the main
concepts of using confidence intervals in model checkingthBy in Sectior8.2we discuss
the simulation engine of MRMC on the basis of several example

8.1 Confidence intervals and model checking

Let us consider the verification of the three most importgetrators of CSL: the unbounded-
until operatorP..;, (A U G), the steady-state operatfy, (G), and the time-interval until
operatoP,;, (A Uttt G), with ¢y, t, € Rsg andt; < t,. We assume thate {<, <, >, >

} and, since we do not consider nested simulation, bb#mdg are treated as sets of states.

In order to verify the formula®.., (A U G), Pu, (A Ult21 G) or Sy, (G), we apply the
following procedure. First, for an initial statg the probabilityp (= Prob(sy, A U G),
= Prob (sg, A U2l G) or = Prob™ (sy, G)) is estimated in a form of the. i. Second, the
c.i. of p is checked against the probability constraintb, to assess whethey satisfies the
given formula or not.

Leaving the task of computing thei. of p out of scope, further we concentrate on the
second step of the outlined approach. There are two impgarasons for that. First, this
procedure is universal for all considered operators. S#cbacause of the probabilistic
nature of thec.i., the procedure should guarantee the correctness of thik vadusome
(predefined) confidence.

Further, we split our discussion into three parts. Firstsivew how to decide op < b
when it is known thap € [A4,, A,]. Then, we recall the notion of thei. of p and outline
several problems related to the usecof in validation ofp < b. Finally, we show how to
overcome this problems, either by imposing some assungtoby putting constraints on
the width of the used. i.

8.1.1 Simple problem

Let the value ofp be unknown, but let us also know two bounds A, € R, such that

A, < p < A,. Inthis setting, assessing whether< b holds can be done based on the
boundsA, and 4, in a straightforward manner. Clearly, such an assessnaerd]lfallowed

>, is possible only ib & [A,, A,] and thus the check yields three possible answers: positive
(TRUF), negative FALSE), or “Don’t know” (NN).

8.1.2 Using confidence intervals

For a given confidencg and sample sizé/ € N, thec.i. of p can be represented in the
following form:

Prob (Al (5_5) <PF<A (i)) ~ € (8.1)

whereX is a sample obtained via simulations of the given Markov rch&quation §.1)
— —

indicates that sampled interva{lfil (X) , A, (X) containp in about100 - £ % cases. The

latter implies that using the. i. of p, for decidingp < b, brings us two problems:

34

e If b = p then the solution of the model-checking problem is gengratknown. l.e.,
similar to model checking by means of hypothesis testiftg([6, SVA04, SVAOT], the
analysis based on tleei. will be inconclusive. Clearly, in this case with probabyili

we havep, b € [Al (i) A, <)_(>)]

¢ Due to the probabilistic nature of thei., the result of the comparison between the
c.i. and constraintas b becomes probabilistic itself. This means that, in orderive g
a correct answer tp > b, it is not enough to check the i. of p against< b. In
addition, we have to provide a confidence with which the tesusuch comparison
provides a correct answer to the original problem.

8.1.3 Solving the problems

The first problem is generally unsolvable. Thus we can ondyiaee thatb — p| = § with
0 € R.g. Under this assumption, the second problem can be solvedlaws.

Let us choosé’ € R such that’ < ¢ and consider onlg. i. bordersA, ()_()> A, ()_()>

such thatA4, ()?) — A, (f) < ¢'. Clearly, using sucle. i. for deciding onp < b will

guarantee us that in at ledsbo - ¢ % cases we will be given a correct answer.

In the solution abovey’ is defined using’ which is unknown. Yet, it is clear that an
incorrectly chosen’ can be recognized by the fact that in repetitive simulatibesombined
percentage of “incorrect” and “Don’t know” answers exce#ds- (1 — &) %.

Note that, producing &-tight c. i. is a matter of computing a sequential confidence inter-
val. In MRMC we implemented a naive procedure where we irsg¢he sample size until
the c.i. becomes narrow enough. We realize that using this impromerepgure can cause
the decrease of the confidence levels, although this wagasetreed in our experiments, see
Chapter 7 of Yap0g. The description of a proper sequential. derivation can be found in
[Fis96 CR69.

Let us summarize that for a given confide@nd a maximune. i. width ¢’ the simulation
engine of MRMC guarantees to provide the correct answerdaartbdel-checking problem
if the following conditions hold:

1. |b—p] =6 € Ry 2. ¢ e Rypandd’ <o

Note that, in MRMC{’ corresponds to the value bidiff. reg. width , man-
ageable by theet indiff width R command, see Sectid2.3

8.2 Simulation engine

In this section we provide several examples that explainthegimulation engine of MRMC
can be used.

Example 6 Consider the dice model depicted in Figlt& on page6. Let us forget about
its rewards and assume that this model is a CTMC. Then if wekew¥IRMC on this model,
turn the simulation engine on and use firent command, we get the following:

3An incorrectc. i. of p can still result in the correct answerjio< b.

35

$ mrmc ctmc game.lab game.tra

>> set simulation on

>> print

---General settings:

M. C. simulation

= ON
---Monte Carlo simulation:
Simulation type = ALL
Sim. steady state = HYBRID
Reg. method steady = HEURISTIC

Confidence level
Indiff. reg. width

= 9.500000e-01
2.000000e-02

Max sample size = 100000
Min sample size = 10000
Sample-size step type = AUTO
Sample-size step = 100

RNG discrete dist. = Appl. Crypt.
RNG exponential dist. = GSL Taus
Max simulation depth = 100000
Min simulation depth = 10000
Simulation-depth step = 1000

BSCC dim. multiplier =3

---Numerical methods:

Here, for brevity, we omitted uninteresting parts of thepotit Notice that, the section called
General settings indicates that the simulation engine is activated, and tbwly ap-
peared sectioMonte Carlo simulation contains most of the options, manageable
by the commands given in Sectiér2.3 Note that, more options are available in case of
doing simulations for one initial state:

>>set sim_type one

>>print
---General settings:

---Monte Carlo simulation:

Simulation type = ONE
Sim. initial state =1
Above, the simulation mode is changed and the new ofliilon initial state indi-

cates that the default initial state is

In the following example we are going to consider the mostigirase of model-checking
using the simulation engine:

Example 7 Extending Exampl8, let us be interested in a simple question: Is the probapilit
to reach thegoal state without visiting théoss state greater thar.3? The latter can be
expressed as the following CSL formul; 5 (—loss U goal).

As we would like to check the above formulated question bpstdasimulation, we invoke
MRMC'’s simulation engine by typirggt simulation on . Providing MRMC with the
formula above will cause the tool to run its model checkingcpdure:

>>set simulation on

>>P{> 0.3} [!loss U goal]
$SIMULATED: YES
$MAX_NUM_USED_OBSERV: 101944
$CONFIDENCE: 9.500000e-01

36

$CI_LEFT_RESULT: (0.1919024, 0.0000000, 0.1893418, 0.19 74192, 1.0000000)
$CI_RIGHT_RESULT: (0.2097583, 0.0000000, 0.2051940, 0.2 114822, 1.0000000)
$YES_STATE: { 5 }

$NO_STATE: { 1, 2, 3, 4 }

The Total Elapsed Model-Checking Time is 115 milli sec(s).
>>

As a result, we get four relevant outputs: two probabilitgtees $CI _LEFT_RESULT
and $CI _RIGHT_RESULT as well as the two state S&®YES STATEand $NOQSTATE
The probability vectors correspond to the left and right. borders derived for the first,
second, etc. state of the model. Note that, the trivial pbaiiges, i.e.0.0 and 1.0, are most
likely to be computed via graph analysis. T¢ES STATEset contains the states in which
the formula is satisfied. ThRBNQSTATE set contains states in which the formula is not
satisfied. If the for a given state the simulation result imclusive, then it does not appear
in any of the sets.

In the output abovefMAXNUMUSEDOBSER\Indicates the maximum — over all initial
states — number of states that were considered in order teigiecthe answer for the given
model-checking problem. More specifically, we count statg$ed during the simulation
procedure. Therefore, the same model state is counted ag times as it is visited. On
the other hand, we do not take into account state visits thatioduring the model-graph
analysis or numerical computations (for the case of hybinausation).

The$SCONFIDENCHButput tells us, that the results are correct with thg4 confidence.
In is important to note that in case of nested formulas, wherave to simulate more than
one operator, the confidence levels for sub formulas arevddrirom the overall confidence
level. Their values then can be viewed by usingtia tree command, see Secti6ériL

In the following example we are going to explain two impottaases: the output of the
simulation results for one initial state; and an insuffitiemmber of observations.

Example 8 Extending Examplé&, let us assume that we are only interested in verifying
P-o3 (—loss U goal) in state3. Also, we can be afraid of spending too much time on simu-
lation and thus want to reduce the maximum sample size andation depth. The latter is
important only for model checking the unbounded-until har $teady-state (by pure simula-
tion) operators. Then our interaction with MRMC might loakfallows:

>>set simulation on

>>set sim_type one

>>get initial_state 3

>>set min_sample_size 10

>>set max_sample_size 30

>>set min_sim_depth 10

>>set max_sim_depth 30

>>P{> 0.3} [!loss U goal]
$SIMULATED: YES

SINITIAL STATE: 3
$MAX_NUM_USED_OBSERV: 308
$CONFIDENCE: 9.500000e-01
$CI_LEFT_RESULT: (0.1154063)
$CI_RIGHT_RESULT: (0.3023792)
$YES _STATE: { }

$NO_STATE: { }
$INDIFF_ERR_STATE: { 3 }
WARNING: Increase max_sample_size for obtaining the conf. int. of the desired width.

The Total Elapsed Model-Checking Time is 0 milli sec(s).

37

Here, we first set simulation modedoe and then set the initial state to I3 Next, we
reduce the minimum and the maximum sample sizes and siomutigpths. After that we
invoke the model checking procedure. In this casectheborder arrays have sizé. This
can be checked by the following:

>>$RESULT[1]

$CI_LEFT_RESULT[1] = 0.1154063

$CI_RIGHT_RESULT[1] = 0.3023792

>>$RESULTI[3]

$CI_LEFT_RESULT[3] = ??

WARNING: Invalid index 3, required to be in the [1, 1] interva I
$CI_RIGHT_RESULT[3] = ??

WARNING: Invalid index 3, required to be in the [1, 1] interva I

Here, unlike in the previous example, the sBYES STATEand $SNQSTATE are empty.
This should indicate that the simulation provides incosula results. Moreover, anithis

is an important part, a new se$INDIFF _ERRSTATEIs added to the output. This set
contains our initial state, i.e3. If this set appears in the output, it means that the max.
number of observations (the max. sample size) and/or the sienulation depth are not
large enough to produce the i. tighter than the (specified) value &idiff. reg.

width , see SectioB.1 If this happens, the simulation run should be discarded toe
max. sample size / simulation depth values have to be inedeas

38

9 MRMC Test Suite

In order to keep MRMC bug free and to compare its performaoa#her model-checking
tools (such as PRISM{NPOZ], Ymer [YouO5H and VESTA [5VA04]) we have developed
a fully automated test suite featuring: internal, funcéibaind performance tests.

The internal tests are targeted on testing, e. g., MRMC datetares, such as: sparse ma-
trices, bit sets, sample vectors, and etc. The functiosés e used to assess the user-level
behavior of the tool. This includes tests for the command-Interface, model-checking
algorithms, and etc. Last but not least, the performands &®w to evaluate the efficiency
of implemented algorithms, such as: probabilistic bisiatioin minimization, and “discrete
event simulation” based model checking. Here, we consieleral efficiency aspects: veri-
fication time, memory usage and etc.

The test suite contains well-known case studies: Wirelasai Communication Pro-
tocol (WGC) [VINS99, BCG02Z MKLO04], Simpel Peer-To-Peer Protocol (PTRNPO4],
Workstation Cluster (WC)HHKOO, BKKTO3, YKNPO4, KNP02, KNP08H, Cyclic Server
Polling System (CSP)T90, You05h YouO5g HKMKS00, SVA04, YKNPO6, YS0€§, Ran-
domized Mutual exclusion (RME}Z8], Crowds Protocol (CP{R98 KNP084 and Syn-
chronous Leader Election Protocol (SLERDO, LP02, GSB94 FP04.

The test suite is freely distributed and can be obtained:from

http://www.mrmc-tool.org/

Note that, the test suite is intended to be used on a Linutophatonly and its performance
sub suite is not proven to work correctly under "Windows + @yg or "Mac OS X”. For
the test-suite installation instructions see SecBidof Chapter3. The test-suite structure is
as follows:

e /TS _Manual.pdf - The test-suite manual.

e /LICENSE - A copy of the GPL license.

e /README - The “read me” file.

e /RELEASENOTES — The release notes.

e ./settings.cfg — The configuration script.

e Jtest _all.sh — The test-suite invocation script.
e /clean _all.sh — The test-suite “clean-up” script.
e ./stop.sh — The test-run termination script.

e ./internal _tests/ — Unit tests of the MRMC core.

39

http://www.mrmc-tool.org/

e ./functional _tests/ — Functional tests of MRMC.

e ./performance _tests/ — Performance tests of MRMC.

40

10 Contact

The development of MRMC began in 2004 in the Formal MethoakTaols group (FMT)
at the University of Twente (The Netherlands) under the sugen of Prof. Dr. Ir. Joost-
Pieter Katoen. Later, the main development of the tool wagando the Software Modeling
and Verification group at the RWTH Aachen (Germany). At pnésleere are several other
groups involved into the tool development, namely the Imfatics for Technical Applica-
tions group at the Radboud University Nijmegen (The Netrett), the Dependable Systems
and Software group at the University of Saarland (Germaany, the Scientific Computing
and Control Theory group at the Centrum voor Wiskunde errin&tica (The Netherlands).
If you have any questions, comments or ideas, or if you wamatticipate in MRMC
development, please consider the following contact infirom:

Name: Prof. Dr. Ir. Joost-Pieter Katoen

Relation: The MRMC team leader, 2004 — present

Affiliation: Software Modeling and Verification, RWTH Aachen, Ger-
many

Name: Dr. lvan S. Zapreev

Relation: MRMC development, 2004 — present

Affiliation: Scientific Computing and Control Theory, Centrum voor
Wiskunde en Informatica, The Netherlands

Name: Dr. Ir. David N. Jansen

Relation: MRMC extension and optimization, 2007 — present
Affiliation: Informatics for Technical Applications, Radboud Univéysi
Nijmegen, The Netherlands

= B 9

Name: Prof. Dr. Ing. Holger Hermanns

Relation: CTMDPI model checking, 2007 — present
ﬁg@ Affiliation: Dependable Systems and Software, University of Saarland,

Germany

More contact information can be found on the MRMC web-paga\[0€].

41

http://www-i2.informatik.rwth-aachen.de/~katoen/
http://db.cwi.nl/personen/publiek/zoek_show.php4?persnr=2198
http://www.cs.ru.nl/D.Jansen/
http://depend.cs.uni-sb.de/index.php?hermanns

Bibliography

[ABFHT08] Cerion Armour-Brown, Jeremy Fitzhardinge, Tom Hughdisholas Nether-

[AHKO3]

[BCGO2]

[BDHOO]

[BFKTO3]

[BHH+06]

[BHHKOO]

[BHHKO3]

[BHKHO5]

cote, Paul Mackerras, Dirk Mueller, Julian Seward, RobeatslV, and Josef
WeidendorferValgrind, http://www.valgrind.org/2008.

Suzana Andova, H. Hermanns, and Joost-Pieter KgtDeéscrete-Time Re-
wards Model-CheckedFormal Modeling and Analysis of Timed Systems
(FORMATS) (K.G. Larsen and P. Niebert, eds.), vol. 2791, IS\Gpringer,
2003, pp. 88-104.

A. Bondavalli, A. Coccoli, and F. Di Giandomenid@pS Analysis of Group
Communication Protocols in Wireless Environmeiuwer Academic Pub-
lishers Concurrency in Dependable Computing, 2002.

S. Bernardi, S. Donatelli, and A. HorvatGpmpositionality in the GreatSPN
Tool and Its Application to the Modelling of Industrial Apgations Practical
Use of High-level Petri Nets (K. Jensen, ed.), UniversityAafhus, Depart-
ment of Computer Science, 2000, pp. 127-146.

P. Buchholz, M. Fischer, P. Kemper, and C. Teppadel checking of CTMCs
and discrete event simulation integrated in the APNN-ToxlMeasurement,
Modelling, and Evaluation of Computer-Communication 8yss (F. Bause,
ed.), vol. 781, Fachbereich Informatik, Universitat Dound, 2003, pp. 30—
33.

Eckard Bode, Marc Herbstritt, Holger Hermanns, Svenr,Jafhomas
Peikenkamp, Reza Pulungan, Ralf Wimmer, and Bernd Beckemposi-
tional Performability Evaluation for STATEMATRuantitative Evaluation of
Systems (QEST), IEEE Computer Society, 2006, pp. 167-178.

Christel Baier, Boudewijn R. Haverkort, Holger kheanns, and Joost-Pieter
Katoen,On the Logical Characterisation of Performability Propieg Inter-
national Colloquium on Automata, Languages and Programr{iGALP)
(Ugo Montanari, Jos D. P. Rolim, and Emo Welzl, eds.), LNC&, ¥853,
Springer, 2000, pp. 780-792.

C. Baier, B. Haverkort, H. Hermanns, and J.-P. KatdVodel-Checking Algo-
rithms for Continuous-Time Markov Chain&EE Transactions on Software
Engineering29 (2003), no. 6, 524-541.

Christel Baier, Holger Hermanns, Joost-Pietertdén, and Boudewijn R.
Haverkort, Efficient computation of time-bounded reachability proiitibs

42

http://www.valgrind.org/

[BKKTO3]

[CES86]

[CGO04]

[CKKPOS5]

[CL77]

[CR65]

[FG88]

[Fis96]

[FouO7]
[FP04]

[GSB94]

[HCH*02]

[Her]

in uniform continuous-time Markov decision proces3égoretical Computer
Science345(2005), no. 1, 2-26.

P. Buchholz, J.-P. Katoen, P. Kemper, and C. Tepptdel-checking large
structured Markov chainsJournal of Logic and Algebraic Programmibg
(2003), 69-96.

E. M. Clarke, E. A. Emerson, and A. P. Sisfatomatic verification of finite-
state concurrent systems using temporal logic specifingtitMC Transac-
tions On Programming Languages And Systé($986), no. 2, 244-263.

Frank Ciesinski and Marcus GroRédn Probabilistic Computation Tree
Logic, Validation of Stochastic Systems (Christel Baier, BouglewR.
Haverkort, Holger Hermanns, Joost-Pieter Katoen, and Mafkegle, eds.),
LNCS, vol. 2925, Springer, 2004, pp. 147-188.

L. Cloth, J.-P. Katoen, M. Khattri, and R. Pulungsfodel-Checking Markov
Reward Models with Impulse RewardBependable Systems and Networks
(DSN), IEEE Computer Society, 2005, pp. 722—-731.

A. A. Crane and J. Lemoindn introduction to the regenerative method for
simulation analysis Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1977.

Y. S. Chow and H. Robbin§n the asymptotic theory of fixed-width sequen-
tial confidence intervals for the meaAnnals of Mathematical Statisti&6
(1965), no. 2, 456—-462.

Bennett L. Fox and Peter W. Glyn8pmputing Poisson probabilitie€om-
munications of the ACMB1(1988), no. 4, 440—445.

George S. Fishmamonte Carlo: Concepts, Algorithms and Applicatipns
Springer, New York, NY, USA, 1996.

Eclipse Foundatiokclipse http://www.eclipse.org2007.

W. Fokkink and J. Pan&jmplifying Itai-Rodeh leader election for anonymous
rings, Electronic Notes in Theoretical Computer Scied@s8 (2004), no. 6,
53-68.

Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskan, randomization in se-
guential and distributed algorithmsACM Computing Survey26 (1994),
no. 1, 7-86.

B. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen, andB@ier, Model
Checking Performability PropertiesDependable Systems and Networks
(DSN), IEEE Computer Society, 2002, pp. 103-112.

Holger Hermanns, Homepage of the Dependable Systems group
http://depend.cs.uni-sh.de

43

http://www.eclipse.org
http://depend.cs.uni-sb.de

[HHKOOQ] B. Haverkort, H. Hermanns, and J.-P. Kato@m the Use of Model Checking
Techniques for Dependability Evaluatiddymposium on Reliable Distributed
Systems (SRDS), IEEE Computer Society, 2000, pp. 228-237.

[Hil96] Jane Hillston, A Compositional Approach to Performance Modellilmgstin-
guished Dissertations Series, Cambridge University Pridssy York, NY,
USA, 1996.

[HJ94] N. Hansson and B. Jonssaxlogic for reasoning about time and reliability

Formal Aspects of Computing(1994), no. 5, 512-535.

[HKMKSO00] Holger Hermanns, Joost-Pieter Katoen, Joachiey®t-Kayser, and Markus
Siegle,A Markov Chain Model Checkeffools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (Susanne Graf Biichael
Schwartzbach, eds.), LNCS, vol. 1785, Springer, 2000, $p-362.

[HKNPO6] A. Hinton, M. Kwiatkowska, G. Norman, and D. ParkBRISM: A Tool for
Automatic Verification of Probabilistic SystenT®ols and Algorithms for the
Construction and Analysis of Systems (TACAS) (H. Hermanmd & Pals-
berg, eds.), LNCS, vol. 3920, Springer, 2006, pp. 441-444.

[IR90] Alon Itai and Michael RodelSymmetry breaking in distributed networks
formation and Computatio®8 (1990), no. 1, 60-87.

[IT90] Oliver C. lbe and Kishor S. TrivediStochastic Petri Net Models of Polling
SystemsSelected Areas in Communicatio®$1990), no. 9, 1649-1657.

[JKOT07] David N. Jansen, Joost-Pieter Katoen, Marcel Oldenkamapielle Stoelinga,
and lvan S. Zapreetow Fast and Fat Is Your Probabilistic Model Checker?
Haifa Verification Conference (HVC), LNCS, vol. 4899, Smgan, 2007,
pp. 65 —79.

[KKNPO1] J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. kayFaster and Sym-
bolic CTMC Model CheckingProcess Algebra and Probabilistic Methods,
Performance Modeling and Verification (PAPM/PROBMIV) (laude Alfaro
and Stephen Gilmore, eds.), LNCS, vol. 2165, Springer, 200123—-38.

[KKZ05] Joost-Pieter Katoen, Maneesh Khattri, and lvan &2evA Markov Reward
Model CheckerQuantitative Evaluation of Systems (QEST), IEEE Computer
Society, 2005, pp. 243-244.

[KKZJO7] Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreewl ®avid N. Jansen,
Bisimulation Minimisation Mostly Speeds Up Probabilisdlodel Checking
Tools and Algorithms for the Construction and Analysis o$@yns (TACAS)
(Orna Grumberg and Michael Huth, eds.), LNCS, vol. 4424|rigar, 2007,
pp. 87-101.

[KNPO2] M. Kwiatkowska, G. Norman, and D. Park&RISM: Probabilistic Symbolic
Model CheckerModelling Techniques and Tools for Computer Performance

44

[KNPO6]

[KNPO8a]

[KNPO8b]

[KZ05]

[KZ06]

[LPO2]

[MKLO4]

[MN98]

[MNS99]

[01d07]

[PM88]

[PtFSF074]

Evaluation (TOOLS) (T. Field, P. Harrison, J. Bradley, andHarder, eds.),
LNCS, vol. 2324, Springer, 2002, pp. 200-204.

, Symmetry Reduction for Probabilistic Model Checki@pmputer
Aided Verification (CAV) (T. Ball and R. Jones, eds.), LNCSl.v4114,
Springer, 2006, pp. 234—-248.

, Prism case studiesittp://www.prismmodelchecker.org/casestudies/

2008.

-, Prism web-page, Workstation Cluster Example
http://www.prismmodelchecker.org/casestudies/chysitg 2008.

J.-P. Katoen and Ilvan S. Zapre&afe On-The-Fly Steady-State Detection for
Time-Bounded Reachabiljtyech. Report TR-CTIT-05-52, CTIT, University
of Twente, 2005.

Joost-Pieter Katoen and Ivan S. Zapre®8afe On-The-Fly Steady-State De-
tection for Time-Bounded ReachabilitQuantitative Evaluation of Systems
(QEST), IEEE Computer Society, 2006, pp. 301-310.

Richard Lassaigne and Sylvain Peyronnéijpproximate verification of
probabilistic systemsProcess Algebra and Probabilistic Methods, Perfor-
mance Modeling and Verification (PAPM/PROBMIV) (Holger Heanns and
Roberto Segala, eds.), Springer, 2002, pp. 213-214.

Mieke Massink, Joost-Pieter Katoen, and Diego WateModel Checking De-
pendability Attributes of Wireless Group Communicati@ependable Sys-
tems and Networks (DSN), IEEE Computer Society, 2004, pp-720.

Makoto Matsumoto and Takuji NishimuraVlersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom nemgeneratoy

ACM Transactions on Modeling and Computer Simulat®(1998), no. 1,
3-30.

Michael Mock, Edgar Nett, and Stefan Schemnigficient Reliable Real-
Time Group Communication for Wireless Local Area Netwoiksropean
Dependable Computing Conference (Jan Hlavicka, Erik Maednhd Andrs
Pataricza, eds.), LNCS, vol. 1667, Springer, 1999, pp. 380—

H.A. OldenkampProbabilistic model checking: A comparison of tadiéas-
ter’'s thesis, University of Twente, Faculty EEMCS, Compuieience De-
partment, Formal Methods and Tools Group, Enschede, Natttky, 2007.

Stephen K. Park and Keith W. MilleRandom Number Generators: Good
Ones Are Hard to FindCommun. ACM31(1988), no. 10, 1192-1201.

GNU Project and the Free Software Founda®Bdii) General Public License
(GPL), http://www.gnu.org/copyleft/gpl.ntmR2007.

45

http://www.prismmodelchecker.org/casestudies/
http://www.prismmodelchecker.org/casestudies/cluster.php
http://www.gnu.org/copyleft/gpl.html

[PtFSFO7Db] , GNU Scientific Library (GSL)http://www.gnu.org/software/gsl

2007.

[PZ86] A. Pnueli and L. Zuck\ferification of Multiprocess Probabilistic Protocols
Distributed Computing. (1986), no. 1, 53-72.

[QS96] M. A. Qureshi and W. H. Sandes,New Methodology for Calculating Dis-
tributions of Reward Accumulated During a Finite Interyv&ault-Tolerant
Computing, IEEE Computer Society, 1996, pp. 116-125.

[RR98] M. K. Reiter and A. D. RubinCrowds: Anonymity for Web Transactigns
ACM Transactions on Information and System Security, vOIACM Press,
1998, pp. 66-92.

[Sch95] Bruce SchneieApplied cryptography (2nd ed.): protocols, algorithmsgdan
source code in CJohn Wiley & Sons, Inc., New York, NY, USA, 1995.

[SVAO4] Koushik Sen, Mahesh Viswanathan, and Gul AdgBiatistical Model Check-
ing of Black-Box Probabilistic SystemSomputer Aided Verification (CAV)
(Rajeev Alur and Doron A. Peled, eds.), LNCS, vol. 3114, sger, 2004,
pp. 202-215.

[SVAO5] , On Statistical Model Checking of Stochastic Syste@@mputer
Aided Verification (CAV) (Kousha Etessami and Sriram K. Ragmi, eds.),

LNCS, vol. 3576, Springer, 2005, pp. 266—280.

[TGO6] Mirco Tribastone and Stephen GilmorA, New Generation PEPA Work-
bench Process Algebra and Stochastically Timed Activities (PAS 2006,
pp. 1820-1845.

[TVOO] H. C. Tijms and R. VeldmanA fast algorithm for the transient reward dis-
tribution in continuous-time Markov chain®©perations Research Letters,
vol. 26, 2000, pp. 155-158.

[YKNPO4] H. Younes, M. Kwiatkowska, G. Norman, and D. Parkeumerical vs. Sta-
tistical Probabilistic Model Checking: An Empirical Studiools and Algo-
rithms for the Construction and Analysis of Systems (TAC/AS)Jensen and
A. Podelski, eds.), LNCS, vol. 2988, Springer, 2004, pp.606—

[YKNPO6] Hakan Younes, Marta Kwiatkowska, Gethin Normangd David ParkeiNu-
merical vs. Statistical Probabilistic Model Checkjr&pftware Tools for Tech-
nology Transfer (STTT$ (2006), no. 3, 216-228.

[YouO4] H. Younes,Black-box probabilistic verificationTech. Report CMU-CS-04-
162, Carnegie Mellon University, 2004.

[YouO5a] , Verification and Planning for Stochastic Processes with nAsy
chronous Eventd$h.D. thesis, Computer Science Department, Carnegie Mel-

lon University, Pittsburgh, PA, USA, 2005.

46

http://www.gnu.org/software/gsl

[YouO5b]

[YS02]

[YS06]

[Zap08]

[ZIN*+08]

, Ymer: A Statistical Model Checke€omputer Aided Verification
(CAV) (Kousha Etessami and Sriram K. Rajamani, eds.), LN, 3576,
Springer, 2005, pp. 429-433.

Hakan Younes and Reid Simmospbabilistic Verification of Discrete Event
Systems using Acceptance Sampli@@mputer Aided Verification (CAV)
(Ed Brinksma and Kim Guldstrand Larsen, eds.), LNCS, vo0£&&pringer,
2002, pp. 223-235.

H. Younes and R. Simmon§&tatistical Probabilistic Model Checking with
a Focus on Time-Bounded Propertiaformation and Computatio204
(2006), no. 9, 1368-1409.

l. S. Zapreewlodel Checking Markov Chains: Techniques and ToelsD.
thesis, University of Twente, Enschede, The Netherlan@i3d2

Ivan S. Zapreev, Christina Jansen, Viet Yen Nguyen, @&kiJansen, et al.,
MRMC homepageénttp://www.mrmc-tool.org/2008.

47

http://www.mrmc-tool.org/

A CTMDPI: Model examples

This appendix describes CTMDPI models supported by MRM@&sEhare the input mod-
els for the CTMDPI model-checking componeft-{KHO05] of MRMC, developed by the
Dependable Systems and Software gradpi] of the Saarland University.

A.1 Markov decision processes

In general, Markov decision processes (MDPs), and CTMD#|zarticular, are similar to
Markov chains, except that in addition to the stochastinditéons they also allow for the
non-deterministic ones. The non-determinism introdugetthbm is supposed to be resolved
by some scheduler.

Typically, MDPs are expected to have an initial distribantidHowever, we will assume
that there is just one initial state, namely the staté any given CTMDPI model.

Figure A.1: A CTMDP example

Example 9 An example CTMDP is depicted in Figufel This model contains only two
states:1 and 2. For the first one, a scheduler can choose between two tiansitnamely
a andb. If the choice is done in favor of the first one, then furtherhage a probabilistic
choice defined by the rateof going to state2 and the rate ofl of going back to state.
Alternative, if the scheduler chooslesthe rate of returning to staté is only 1 and to state
2 is 6. State2 does not have a true non-deterministic choice, because tiseonly one
non-deterministic transition present.

It becomes clear now, that with MDP models, like with simplEMICs, one can be inter-
ested in computing, e. g., reachability probabilities ated €he only difference is that, since
we can have any possible scheduler, we have to talk aboutmaimind maximal probabili-
ties. All this implies that we can actually do model checkaigTMDPs.

48

A.1.1 Markov decision processes with internal non determin Ism

The CTMDP described before has only one level of non detesminlt is also possible to
have CTMDPs with two layers of non-determinism, in this casecall them CTMDPIs. On
the first layer, an external scheduler takes a decision, dhanternal decision occurs, and
after this the probabilistic decision takes place.

STATES 2
#DECLARATION
#END

la
*27.0
la
*14.0
*23.0
1b
*11.0
*26.0
2a
*27.0
2a
*25.0

2 *12.0

Figure A.2: A CTMDPI example

Example 10 Consider a CTMDPI model given in the left-hand side of Figirg In this
model, statd has two external non-determinism choicesandb. If decisiona is taken,
then there is an internal non-deterministic choice. Onenloraof it leads to going to state
2 with the rate7. The other one leads to going to st&tavith the rate3 and to statel with
the rate4. Decisionb leads to a trivial internal non-determinism. Statdnas an internal
non-determinism as well.

The CTMDP examples above are given by state-transitionsggigonding distributions,
and labeling functions that map sets of labels to the triamsit Note that, for model checking
we also need to provide state labeling functions (in ourstdseset of state labels are empty).

In order to be used with MRMC, CTMDPIs have to be transfornméd ihe MRMC input
files that have an extensiootmdpi . For example, the model given in the left-hand side
of FigureA.2 results in a file given in right-hand side of the same figures Iinportant to
note, that CTMDPI model checking uses CSL for specifyingoprties. At present we only
support time-bounded reachability properties. Similathieos CTMC model checking, these
properties are based on state labels that have to be spenifiethb file. The transition
labels are needed only for the CTMDPI model-checking engimek should not be used in
properties.

49

B RNG Investigations

We define random number generators (RNGs) as algorithmaltbatto generate uniformly
distributed random numbers for a prescribed real interval.

RNG implementations are commonly used in programming apeaslly in discrete-
event simulation engines. In MRMC we use RNGs for simulatisgrete or exponentially
distributed random variables. The first ones are used tolatmthe probabilistic choice
between state-transitions and the second ones are empglwgadulate exponentially dis-
tributed waiting times of CTMC states.

Nowadays, there exist many RNGs, but often these generatnren various aspects. For
example, they can differ in: time needed to calculate a randomber or the quality of their
output. The latter aspect can be splitin (at least) two paris generator can calculate more
equidistributional random numbers than the other; difiegenerators can have different
periods i. e. the number of method invocations after which the gateel random numbers
start to repeat in a circular manner. In our experimentsughpwe mainly concentrated
on how good RNGs are for generating values of non-unifornordte and exponentially
distributed random variables. This was done by accessiagpleed of random-number
generation and the correspondence of the sampled distmistib the original ones.

To choose which generator is better and can be used as atdef@uln MRMC, we
tested seven different RNGs. Some of them were taken bethegalready made it into
probabilistic model checkers such as PRISM, Ymer or VEST&,dthers are widely used
in industry, and etc.

The rest of the appendix is organized as follows: Sediidrpresents the description of the
considered RNGs. Further, in SectiBr?, we explain how RNGs can be used for generating
values of non-uniform discrete and exponentially disti¢lolrandom variables, and present
the experimental setup. SectiBr3 provides the experimental results and comparison.

B.1 Random Number Generators

Here, we provide a short summary of the tested RNGs, andradscate the MRMC option
values corresponding to each of them.

B.1.1 Linear Congruential Generator (LCG) — prism

LCG is the oldest and mostly used random-number generagoritdm. A sequence of
random numbers is calculated according to the formyla = (a * x,, + ¢) mod m, where
xo denotes the seed (the initial value) ands the RNG's period. The considered LCG is
implemented as the random functi@nd() of the standard C library (gcc). The useahd()
was taken into account, because PRISM uses it in its sinonlamgine. However, it should

50

be noted that the C random function is known to suffer fromvaperiod. Even th&2-bit
version of it can only offer a period of, = 232.

B.1.2 Improved LCG [PM88] (ILCG) — ciardo

ILCG is a version of LCG, developed by Steve Park and Keithevlillt works similar to
the Standard C random function, but is known to generate mguélistributional random
numbers. Therefore, it is often proposed to be used insteshd(), although it also has a
small period ofm = 232

B.1.3 Combined LCG [Sch95] (CLCG) — app _crypt

This RNG is another extension of the standard LCG. The marargdge of this method is
that, by using two independent LCGs, it increases the pemao aboutn = 264, Note that,
in most cases it is more efficient to combine two LCGs thamigkine with a much larger
modulus (period). CLCG is widely used in the field of Cryptaginy.

B.1.4 Mersenne Twister [MN98] (Twister) — ymer

The Mersenne Twister is a random-number generator dewvetlop&lakoto Matsumoto and
Takuji Nishimura in1997. Today, there exist several variants of this algorithm. \&feeh
chosen Mersenne Twister MT19932¢bit version), because it is the newest and most com-
monly used one. This algorithm is also employed by Ymer amdexowith a large period of

m — 9219937 _ 1

B.1.5 RNGs from GSL [PtFSFO7b]
RNGs introduced in this section are a part of the GNU Scientiforary (GSL).

Ranlux Generator (Ranlux) — gsl _ranlux

According to the GSL documentation, the implemented RANL&l¥orithm is a second-
generation version of the RANLUX algorithm of Luscher arabta period of about, =
10'™'. GSL developers recommend this algorithm as the one withéisé mathematically-
proven quality at the expense of performance.

Lagged Fibonacci Generator (LFG) — gsl _Ifg

According to the GSL documentation, LFG produces randombarsmaszor'd sum of
previously calculated values on the basis of the followiorgrfula:

n =7p_a XOR7,_g XOR 7T, XOR1,_p

with A = 471, B = 1586, C = 6988, D = 9689. This RNG has a period of, = 10%°'"
and is recommended by GSL developers as a fast simulatialityggenerator.

51

Tausworthe Generator (Tausworthe) — gsl _taus

According to the GSL documentation this is a maximally egirtbuted combined Taus-
worthe generator (or polynomial generator) by L'Ecuyerhwatperiod ofm = 2% (about
10%%). Like the lagged Fibonacci generator, the Tausworthe rg¢meis recommended by
GSL developers as a fast simulation-quality generatordwts faster than LFG).

B.2 Experimental setup

In this section, we describe the experimental setup usethtorevaluation of the before
mentioned RNGs, in application to generation of non-umifatiscrete and exponentially
distributed random variables.

In essence, our approach is based on taking a random vaniable particular distribution
and sampling a set of its values (produced with the help ofracpéar RNG). These values
are then used for computing the estimate of the underlyistridution. The latter one is
compared to the original distribution of the random vamablhe main values measured in
our experiments (per distribution), are as follows:

1. The time needed for generating a random values when ugagiaular RNG.

2. The difference between the estimated and original tigions.

B.2.1 Non-Uniform Discrete Random Variables

Generation of non-uniformly distributed discrete randamibers, employing standard RNGs
mentioned in SectioB.1, is typically done in the following manner.

Let us have a discrete random variablith a finite set of values, ..., x,. The value
z; is then produced with probability; for any: € 1,...,nand> ;" p; = 1.0. Let us now
have an RNG which generates us random numbers in the infetyvad] with 0 < A < B.
Then, to generate values ofwe should perform the following steps:

1. Split the real interval0, 1] into n fixed non-overlapping intervalg, . . ., I,, such that
the width of[; equals t, forany: € 1,...,n.

2. Generate a uniformly-distributed random numbéand scale it down using the for-
mulaC/ (B — A). This way we obtain the value in the interyal 1].

3. Findj € 1,...,n such thatC/ (B — A) € I;. Thisj exists becausél;};_, forms a
coverage of0, 1].

4. Returnz; as the value of the random variahle

Clearly, stepl. has to be performed only once and st&te® 3. result in values of that
agree to its distribution.

52

Test Distributions

For our experiments we have chosen six different probgldistributions. Each of these
distributions had 00 values, most of which with non-zero probabilities.

1. The standard uniform distribution (“Unif”).

2. A non-uniform distribution (“Diff”), where one value apgars with a very high proba-
bility (0.899924), and all other values have very small or zero probabilities

3. The “Lorentz” distributioh with the largest and smallest probabilities being equal to
0.013151 and0.00685 respectively.

4. Three distributions: “PoW/, “Pow3” and “Pow!". For eachX € {2, 3, 4}, “PowX”
was generated as follows:
a) Generatdé00 random values using a uniform distribution on the intefvall].
b) Take these values to the pow&r
c) Normalize the resulting values in such a way that they spriowne.
d) Take the new values as probabilities for the distributon, . . ., 100.

Test Settings

For a given RNGR and a distributionD every distribution estimate was computed based
on 1.000.000 sampled values. Also, for every givéhand i, we computed0 distribution
estimates.

The run time forR on D was calculated as a mean time needed for generafdidgstribu-
tion estimates. The quality of ea¢hon D was estimated based on the following quantitative
value:

(B.1)

100 - P 5 100 50
where{p; },_, is the set of probability values of the original dlstrlbumand{ {pi }izl} -
]:

are the probabilities of the) sampled distributions.

B.2.2 Exponentially Distributed Random Variables

The exponential distribution is a probability distributiover the set of positive real num-
bers. In order to generate values of an exponentiallyidigtd random variable, we use the
commonly known inversion method:fis a uniformly-distributed random variable then

1
T = —Xln(l —u)

has exponential distribution with the rate As an optimization, we use formula:

1
T = —Xln(u),

ta well-known probability distribution in physics

53

sincel — u is a uniformly-distributed random variable itself.

Test Distributions

We considered exponential distributions witke {0.01, 0.1, 0.5, 1.0, 5.0, 10.0}.

Test Settings

For every given\ (distribution£) and every RNGR we sampled 0.000.000 random values.

The run time forR on E, was calculated as a total time needed for generating all of
these values. Since exponential distribution is contisuthe quality of eacli on E, was
estimated using discretization:

1. ComputeM — the maximum over all simulated values.

2. Fory = 0.3, computeN = M /§+1 —the number of intervals that form a partitioning
of the simulated valuesl; } , wherel, = [(i — 1) % 6, i % §)?

3. DefineP;, = Prob(X € I;) fori € 1,..., N andX being a random variable with the
distributionE,.

4. DefineP! = S;/107 fori € 1,..., N andsS; being the number of simulated values that
fall into the intervall;.

This process gives us a discrete distribution: foraayl, . .., N we havel; with probability
P;; and an estimate of this distribution: defined by the vaIde{sR}}i]il. The quality of R
on D was then estimated based on the quality of the discritizedmantial distribution and
its discritized estimate. This was done by computing thiefahg quantitative value:

N

[P — P
» o (B.2)
=1 5

Note that, this formula is different from the one given by Btjon B.1. Here we divide
| P, — P!| by 6 because we are interested in the quality with which we apprate the density
function of the original (continuous) distribution.

B.3 RNG comparison - results

All experiments were done on a standard PC with an AR&thlon® CPU 3000+ processor
(64-bit) and and2 GB of RAM. The used operating system was openSuGE

B.3.1 Non-Uniformly Random Numbers

A brief summary of the obtained results can be found in T&ble

2 In our experiments, we had probabilities over intervald0.0, 0.3),...,[2.7, 3.0) for X €
{0.01, 0.1, 0.5, 1.0, 5.0}; and[0.0, 0.3),...,[1.2, 1.5) for A = 10.0.

54

Position]| Speed | Simulation Quality|

1. LFG Ranlux
Tausworthe
CLCG
2. Twister LFG
LCG Tausworthe
ILCG CLCG
Twister
ILCG
3. Ranlux LCG

Table B.1: Non-uniform discrete random variables

Run time

The time needed for generating)00.000 random values for the considered RNGs on cor-
responding distributions is provided in FiguBel. The quality of every RNG on every
distribution is summarized in Tabk.2.

3.5e+07 T T T T

ILCG
Twister
Ranlux

3e+07 |

2.5e+07

2e+07

1.5e+07

Runtime (micro sec.)

1le+07

5e+06

Diff Pow2 Pow3 Pow4 Unif Lorentz
Distribution

Figure B.1: Run time: Non-uniform discrete random variable

Having a closer look at Figui®.1 and TableB.2, the results can be formulated as follows.
From the run-time point of view, the RNG with worst perforrosans clearly the Ranlux
Generator, which positioned itself behind all other RNGevary of the six test cases. The
first three places are fought out between Tausworthe, LFGCAQIS in three out of six test
cases, whereat they still gained leading positions in thr&neing three cases. By looking at
the plots in detail, one may notice that LFG and Tauswortlve kamilar results in every test

55

8 Distribution

o Diff Pow2 Pow3 Pow4 Unif Lorenz

1 | Tausworthe LFG LFG CLCG LFG CLCG

2 LFG Tausworthe Tausworthel Twister | Tausworthe LCG

3 CLCG CLCG ILCG LFG CLFG Tausworthe
4 LCG Twister LCG LCG ILCG LFG

5 Twister LCG Twister | Tausworthe LCG Twister

6 ILCG ILCG ILFG ILCG Twister ILCG

7 Ranlux Ranlux Ranlux Ranlux Ranlux Ranlux

Table B.2: Run time: Non-uniform discrete random variables

case, whereas CLCG is remarkably faster in “Lorentz” andv#o remarkably slower in
“Diff” and “Unif” distribution. Summarized, LFG and Tauswihe positioned themselves in
first place, closely followed by CLCG. The middle-ranked RiN&e then LCG, ILCG and
Twister with similar results, with ILCG tending to be the wiest out of this three RNGs,
except from the “Unif” test case, and with Twister and LCG ppiag positions from case
to case.

Sums of average errors

The sum of average errors for the considered RNGs on comdsmpdistributions is pro-
vided in FigureB.2. The quality of every RNG on every distribution is summadize
TableB.2.

T

CLCG mmmmm
LCG mm=m
ILCG ==

Twister |

Ranlux .
LFG ——3

Tausworthe T

Sum of average errors

Lorentz

Unif

Diff Pow?2 Pow3 Pow4

Distribution

Figure B.2: Sums of average errors: Non-uniform discrateéoan variables

56

Distribution

(72}

g Diff Pow2 Pow3 Pow4 Unif Lorenz

1 ILCG Ranlux CLCG Ranlux ILCG ILCG

2 Twister | Tausworthg Ranlux CLCG Ranlux LFG

3 LFG LFG ILCG LFG LFG Twister

4 CLCG Twister Twister | Tausworthg Tausworthe Ranlux

5 LCG CLCG Tausworthel Twister Twister | Tausworthe
6 | Tausworthe ILCG LFG ILCG CLCG CLCG

7 Ranlux LCG LCG LCG LCG LCG

Table B.3: Sums of average errors: Non-uniform discretdoanvariables

The results of Figur8.2 and TableB.3 can be formulated as follows. From the simulation-
quality point of view, the Ranlux Generator positioned litge leading position. It gained
first/second places in four out of six test cases. Only for“Dié” distribution Ranlux
Generator produces poor results compared to the remaimi@sk Furthermore, as LCG
produced worst results in five out of six test cases, it ¢feeath be seen as the RNG with
the poorest simulation quality in our testing environmehithough the simulation quality
middle-ranked RNGs aren’t clearly distinguishable, one @atect some trends there. LFG
obtains position three with most stability, whereas ILCG@wh the biggest difference in po-
sitioning through the whole test cases. Twister can moslyolind around places four to
five, CLCG and Tausworthe mostly show up on places four to Smmmarized, no clear
ordering can be found for the middle-ranked RNGs.

B.3.2 Exponentially Distributed Random Numbers

A brief summary of the obtained results can be found in Ta&ble

Table B.4: Exponentially distributed random variables

| Position| Speed | Simulation Quality]

1. CLCG Ranlux

2. LFG LFG
Twister Twister

Tausworthe CLCG

LCG Tausworthe
ILCG ILCG
LCG
3. Ranlux

57

Run time

The time needed for generating.000.000 random values for the considered RNGs on cor-
responding distributions is provided in FiguBe3. The quality of every RNG on every
distribution is summarized in TabE.5.

le+07 T T T T

CLCG mmmmm
LCG mmmm
ILCG

Twister E

Ranlux

LFG

ausworthe

9e+06

8e+06

7e+06

6e+06

Runtime (micro sec.)

5e+06

4e+06

3e+06

2e+06

1.0
Lambda

5.0

10.0

0.01 0.1

Figure B.3: Run time: Exponentially distributed randomiahales

8 A

o 0.01 0.1 0.5 1.0 5.0 10.0

1 CLCG Twister CLCG CLCG CLCG CLCG

2 LFG CLCG LFG LFG LFG Twister

3 ILCG Tauswortheg Twister LCG LCG LCG

4 Twister LFG LCG Twister Twister ILCG

5 LCG ILCG ILCG Tausworthe Tausworthel Tausworthe
6 | Tausworthe LCG Tausworthe ILCG ILCG LFG

7 Ranlux Ranlux Ranlux Ranlux Ranlux Ranlux

Table B.5: Run time: Exponentially distributed random ahtes

Having a closer look at Figur®.3 and TableB.5, the results can be formulated as follows.
From runtime point of view CLCG can be seen as the winner olfaroasidered RNGs.
In five out of six test cases it was placed first, for the sixtbec@LCG was placed second.
When looking at pure runtime, Ranlux Generator again shdthegvorst performance of all
RNGs and all test cases examined. The middle-ranked RNGlkaraty be ordered. ILCG
and Tausworthe Generator shows poor performance rehtivethe remaining RNGs, in

58

most of the test cases, closely followed by CLG. Thus LFG amid{€r position themselves
at positions two and three, with LFG producing slightly betesults.

Sums of errors

The sum of errors for the considered RNGs on correspondistgilalitions is provided in
FigureB.4. The quality of every RNG on every distribution is summadine TableB.6.

0.035 T T T T T
CLCG mmmmm

LCG ===
ILCG ===
0.03 Twister
: Ranlux oo |
LFG —
Tausworthe

0.025

0.02

Sum of Errors

0.015

0.01

0.005

0.01 0.1 0.5 1.0 5.0 10.0
Lambda

Figure B.4: Sums of errors: Exponentially distributed ramdvariables

8 A

o 0.01 0.1 0.5 1.0 5.0 10.0

1 Ranlux LFG ILCG ILCG Ranlux LFG

2 LCG LCG Ranlux LCG LFG Twister

3 ILCG Ranlux | Tausworthg CLCG Twister ILCG

4 CLCG Tausworthe Twister | Tausworthe LCG Ranlux

5 Twister CLCG CLCG LFG CLCG LCG

6 | Tausworthe ILCG LCG Ranlux | Tausworthg CLCG

7 LFG Twister LFG Twister ILCG Tausworthe

Table B.6: Sums of errors: Exponentially distributed ramd@riables

The results of Figur&.4 and TableB.6 are hard to summarize by giving an exact ordering
on the considered RNGs. Tausworthe Generator, as well as5CkRow (at least for the
middle- to low-ranked positions) some kind of stability dages four to six for Tausworthe
Generator and places three to six for CLCG respectively.c€onng the leading positions,

59

Ranlux is the only RNG showing durable behavior on positioa to three in four out of the
six test cases. The remaining RNGs — namely LFG, LCG, ILCGTanidter — permanently
change positions with being in first place for one test caséabeady in last place for
another. As no clear tendency could be observed here, wenabtarge field of middle-
ranked RNGs for the simulation quality tests.

60

C CTMC Steady State Simulation

This appendix describes a summary about two improvemepigedpo the hybrid steady-
state simulation algorithmZgp04g. First improvement is a heuristic that improves the re-
generation method. The second improvement is a heurigttdrtiproves the frequency of
confidence interval border computation. Both improvemeatsbe used combined and sep-
arately.

C.1 Heuristic Regeneration Point

Observations revealed that in case of large Markov chairiepk relatively much time to
complete steady-state simulation. The main problem lighiwihe regeneration method
[CL77] used for data collection and analysis: Regeneration sycéed enormous time to
complete.

Initially, we intended to improve the performance by pradgcshorter regeneration cy-
cles, i.e. to find a well-chosen regeneration state thasigad often. In literature finding the
optimal regeneration state is still a research problem/[/]. Sampling experiments and sta-
tistical evaluation were undertaken for several regerm@ratate heuristics to measure which
one is best.

| | Heuristic | Description |

1. pure regeneration method | the state with the lowest index in every BSCC

2. highest ingoing rate the state with highest ingoing rate

3. lowest rate difference the state with the lowest difference between fin-
and outgoing rate

4, sample-based approach the most visited state after foregoing sampling

5. dynamic approach dynamic regeneration state, i.e. choose a new
regeneration state (randomly/sorted by rate etc.)
after every completed cycle

Table C.1: Regeneration state choice heuristics

Observations revealed that the sample-based approacid@sdie best results regarding
the cycle length and performance. Fig@el, where the sample based approach is named
static, sample-basedilso illustrates this result.

The sample-based approach is enabled by default.

61

T T T T
dynamic, order:highest rate —+—
static random state -
dynamic random state ------

static, highest entr. rate B
2e+07 F static, sample-based f]
|

1.5e+07

le+07 | [

Runtime in ms

5e+06 |- : / —

Test Case

Figure C.1: Runtime: dynamic and static regeneration goint

C.2 Heuristic Sample-size Steps

The heuristic regeneration method generates small cy@leis. observation led to another
potential improvement to the hybrid steady-state simoatProfiling data revealed that due
to the small cycles, the confidence interval border computattook relatively lots of time.

We solved this by introducing a heuristic that computes thwfidence intervals after an

amount of cycles, instead of after each cycle.
The chosen amount of cycle can depend on several factorsta¢toes under considera-

tion are listed below:

e |cycle,| : overall cycle length, average cycle lengthnéth sample size step
e #cycles : number of cycles completed so far

N : state space

con f_int: confidence interval width

|BSCC| : average number of states per BSCC

e #BSCC : number of BSCCs

After deriving and testing some formulae for the sample steg heuristic, the following
one was chosen as it provided the best performance. Baséw @urtrent sample step size,

n + 1, a new sample step size is calculated.

62

function dyn.samplesizestepis:
input: integern + 1 such that + 1 > 1
output: n + 1'th sample size step

if(n +1 == 1) returnsqrt(| BSCCY);
elsereturn dynsamplesizestefn) +

\BSCCl).
)

[cyclen]

#BSCC

end dyn samplesizestep

The dynamic sample step size at least doubles every timeaicéslated anew. However,
the computation costs increase linear with the number oesycompleted as well. This
compensates for the increased sample step size. Also, sithelated cycles have low
coverage, the sample size step grows even more, which atégifirom our observation that
less confidence interval border computations are needédaviger cycles.

FigureC.2shows the heuristic (green) against a fixed optimal step(szi for eight test
cases.

o I I T T T . T T
fixed step size = 300000 —+—
dyn step size <
14000 / _
/
12000 / |
/
10000 | |
%2} |
£
£ /
w _ i
£ 8000 |
€
=)
x
6000 - |
4000 | |
2000 - |
O fﬁiiiﬂzilVﬁiiiT????? - I L 1 1
0 1 2 3 4 5 . -]

Test Case

Figure C.2: Runtime: dynamic and fixed sample size step

63

	1 Introduction
	2 MRMC tool description
	3 Building MRMC
	3.1 Building MRMC from source code
	3.1.1 Getting & Installing GSL
	3.1.2 Linux
	3.1.3 Windows
	3.1.4 Mac OS X
	3.1.5 Getting & Using Splint

	3.2 Getting & Installing Test Suite
	3.2.1 Configuring tests

	4 MRMC's Input Files
	4.1 The .tra File Format
	4.2 The .lab File Format
	4.3 The .ctmdpi File Format
	4.4 The .rew File Format
	4.5 The .rewi File Format
	4.6 Getting MRMC models
	4.6.1 PRISM
	4.6.2 Performance Evaluation Process Algebra (PEPA)

	5 Running MRMC
	5.1 Command line options

	6 MRMC run-time Commands
	6.1 Basic Commands
	6.1.1 help
	6.1.2 help logic
	6.1.3 help simulation
	6.1.4 help rewards
	6.1.5 help common
	6.1.6 print

	6.2 Advanced Commands
	6.2.1 Common
	6.2.2 Numerical Methods
	6.2.3 Simulation
	6.2.4 Rewards

	7 Property Specification with Temporal Logics
	7.1 Common-logic subset
	7.1.1 State formulae
	7.1.2 Path formulae

	7.2 PCTL
	7.3 PRCTL
	7.4 CSL
	7.5 CSRL

	8 Model Checking by Discrete Event Simulations
	8.1 Confidence intervals and model checking
	8.1.1 Simple problem
	8.1.2 Using confidence intervals
	8.1.3 Solving the problems

	8.2 Simulation engine

	9 MRMC Test Suite
	10 Contact
	A CTMDPI: Model examples
	A.1 Markov decision processes
	A.1.1 Markov decision processes with internal non determinism

	B RNG Investigations
	B.1 Random Number Generators
	B.1.1 Linear Congruential Generator (LCG) -- prism
	B.1.2 Improved LCG (ILCG) -- ciardo
	B.1.3 Combined LCG (CLCG) -- app_crypt
	B.1.4 Mersenne Twister (Twister) -- ymer
	B.1.5 RNGs from GSL

	B.2 Experimental setup
	B.2.1 Non-Uniform Discrete Random Variables
	B.2.2 Exponentially Distributed Random Variables

	B.3 RNG comparison - results
	B.3.1 Non-Uniformly Random Numbers
	B.3.2 Exponentially Distributed Random Numbers

	C CTMC Steady State Simulation
	C.1 Heuristic Regeneration Point
	C.2 Heuristic Sample-size Steps

