
Manual

MRMC TEST SUITE

Version 1.4.1

October 22, 2009

Authors:
Ivan S. Zapreev
Christina Jansen

Contents

1 Introduction 2

2 General details 3

2.1 What is that we are testing? .. 3

2.2 Top-level test-suite structure 4

2.3 Configuring tests . 5

2.4 Common test-suite files . 6

3 Managing tests 8

3.1 Running . 8

3.1.1 Internal and functional tests .. 9

3.1.2 Lumping-performance tests .10

3.1.3 Simulation-performance tests 13

3.2 Stopping .16

3.3 Cleaning .17

4 Internal and functional tests 19

5 Performance tests 20

5.1 Lumping-performance tests .. . 20

5.1.1 Test structure .22

5.1.2 Test statistics .23

5.2 Simulations-performance tests 26

5.2.1 Test structure .27

2

5.2.2 Test statistics .29

6 Contact 32

A Using Ymer 36

1

1 Introduction

MRMC [KZH+09] (see also [JKO+07, KZ09]) is a command-line tool for model check-
ing discrete-, continuous- time Markov chains, and their reward extensions. It also support
model checking of continuous-time Markov decision processes, bisimulation minimization,
simulation-based model checking and many other features.

In order to keep MRMC bug free and to compare its performance to other model-checking
tools (such as PRISM [KNP02], Ymer [You05b] and VESTA [SVA04]) we have developed
a fully automated test suite featuring: internal, functional and performance tests.

The internal tests are targeted on testing, e. g., MRMC data structures, such as: sparse ma-
trices, bit sets, sample vectors, and etc. The functional tests are used to assess the user-level
behavior of the tool. This includes tests for the command-line interface, model-checking
algorithms, and etc. Last but not least, the performance tests allow to evaluate the efficiency
of implemented algorithms, such as: probabilistic bisimulation minimization, and “discrete
event simulation” based model checking. Here, we consider several efficiency aspects: veri-
fication time, memory usage and etc.

The test suite contains well-known case studies: Wireless Group Communication Pro-
tocol (WGC) [MNS99, BCG02, MKL04], Simpel Peer-To-Peer Protocol (PTP) [KNP06],
Workstation Cluster (WC) [HHK00, BKKT03, YKNP04, KNP02, KNP08b], Cyclic Server
Polling System (CSP) [IT90, You05b, You05a, HKMKS00, SVA04, YKNP06, YS06], Ran-
domized Mutual exclusion (RME) [PZ86], Crowds Protocol (CP) [RR98, KNP08a] and Syn-
chronous Leader Election Protocol (SLE) [IR90, LP02, GSB94, FP04].

The test suite is freely distributed and can be obtained from:

http://www.mrmc-tool.org/

Note that, the test suite is intended to be used on a Linux platform only and its performance
sub suite is not proven to work correctly under ”Windows + Cygwin” or ”Mac OS X”.

This manual contains the description of the test suite for MRMC v1.4.1. The provided
description is not complete, and is more-or-less a sorted collection of notes and various facts
related to the test suite. It should simplify the process of acquaintance with the MRMC
testing but the best understanding of the process can be onlyobtained through reading the
test-suite scripts.

The rest of the document is organized as follows. Chapter2 gives an overview of the test-
suite. There, we discuss what and how we test, we also talk about the test-suite structure,
its’ configuration parameters and common-file types. Chapter 3 explains how the tests can
be invoked, stopped and cleaned. In addition, we show how thetest-run outputs should be
interpreted. Chapters4 and5 provide additional information aboutinternal, functionaland
performancetests. Chapter6 contains contact information.

2

http://www.mrmc-tool.org/

2 General details

In this chapter we are going to discuss some details about thetest-suite’s designation, top-
level structure, configuration parameters, and most commonfile types.

2.1 What is that we are testing?

The MRMC test suite consists of three major parts that also have subdivisions:

1. internal – unit tests for the MRMC core.

2. functional – contains the tests for:

• The command-prompt interface of MRMC.

• Model-checking algorithms for:

– Model checking PRCTL properties on DTMCs.
– Model checking CSL properties on CTMCs:

∗ Numerical algorithms.
∗ Discrete event simulation algorithms.

– Model checking PRCTL properties on DMRMs.
– Model checking CSRL properties on CMRMs.
– Model checking CSL properties on CTMDPs.
– Probabilistic bisimulation for DTMCs, CTMCs, DMRMs, and CMRMs.

3. performance – contains the tests for:

• lumping – Measures the effects of strong bisimulation minimizationin model
checking of DTMCs, CTMCs, DMRMs, and CMRMs. The latter two with state
rewards only. For the published experimental results see [KKZJ07].

• simulations – Compares the efficiency of the discrete event simulation en-
gines of MRMC, Ymer, and VESTA, when model checking CTMCs, see [KZ09].

Internal tests are simpleC programs that include MRMC sources and manipulate with
the tools data structures and/or algorithms. These programs provide some output that, when
compared to the expected output, allow to check whether or not the MRMC interns are
working properly.

Functionaltests assess that MRMC, when invoked with certain command line options and
run on certain input files, command-prompt commands and/or logical formulae, produces the
expected output.

Performancetests forlumping run MRMC on various case studies and collect time
and memory statistics for verifying the Markov chains, and for minimising plus verifying

3

the lumped Markov chain. The latter is done for both formula-dependent and formula-
independent lumping. The time statistics is based on the elapsed-time output of MRMC,
whereas memory statistics is collected using the standardps utility. The latter is periodi-
cally invoked during the test runs. For more information about experimental settings read
Section4.2 of [Zap08].

Performancetests forsimulations allow to run MRMC v1.4.1, Ymer (v3.0) and
VESTA (v2.0) on various case studies and collect time, memory,confidence, andsamples
statistics for verifying the CTMCs. Theconfidencestatistics estimates the % of correct an-
swers produced by the same tool on the same model with the sameinputs. Thesamples
statistics reflects the average number of states visited when verifying a given property with
a given tool on a given model. The time andsamplesstatistics are based on the tool out-
puts with one exception. By default, Ymer does not report on the number of sampled states.
Therefore, we extended the tool with the requiredprint statement (for more details see Ap-
pendixA). The memory statistics, for all tools, is collected the same way as it is done for
the lumping tests. For more information about matching the tool parameters and other
experimental settings read Sections7.1 and7.2 of [Zap08].

Note that,lumping andsimulations sub-suites both use PRISM and its models for
generating MRMC input files (Markov chains, labelling, rewards).

Extended information about theperformancetest-suite can be found in Chapter5.

2.2 Top-level test-suite structure

After downloading theMRMC test v1.3.zip file, unpack it in the MRMC folder. As
a result a directoryMRMC HOME DIR/MRMC test v1.3/ will be created. Further, for
brevity, we assume that you rename it intoMRMC HOME DIR/test/. Then the test-suite
structure is as follows:

• ./TS Manual.pdf – The test-suite manual.

• ./LICENSE – A copy of the GPL license.

• ./README – The “read me” file.

• ./RELEASENOTES – The release notes.

• ./settings.cfg – The configuration script.

• ./test all.sh – The test-suite invocation script.

• ./clean all.sh – The test-suite “clean-up” script.

• ./stop.sh – The test-run termination script.

• ./internal tests/ – Unit tests of the MRMC core.

• ./functional tests/ – Functional tests of MRMC.

• ./performance tests/ – Performance tests of MRMC.

4

2.3 Configuring tests

The main configuration parameters of the MRMC test-suite canbe set in the

MRMC HOME DIR/test/settings.cfg

configuration script. These parameters are subdivided intotwo groups:

General settings

• MRMC HOME DIR - The absolute name of the MRMC distribution directory.

• MRMC - The location of the MRMC binary. This setting does not need to be changed if
MRMC HOME DIR is set correctly. Note that, when running MRMC on Windows, the
binary name should be set tomrmc.exe.

• VALGRING HOME - The absolute path to thevalgrind executable [ABFH+08].
It is only required if tests are run under the-valgrind option. Note that in this
case MRMC should be first recompiled with the-O0 -ggdb -g options, which are
available inMRMC HOME DIR/makefile.def.

• VALGRIND LOG FILES DIR - The absolute name of the folder for storinglog filed
produced byvalgrind.

• EXTRA VALGRIND PARAM - Extra options forvalgrind.

Performance-test settings The performance part of the test suite was developed for
Linux platform only. It is not proven to work under Windows orMac OS X.

• PRISM - The absolute path of the PRISM [KNP02] command line executable. This
setting is required for generating performance-test models.

• TMPDIR - This setting should point to a local directory, which will be used for storing
generated models.

• YMER - The absolute path of the Ymer [You05b] command line executable2.

• VASTA JAR - The absolute path of the VESTA [SVA04] jar file2.

• NUMBER OF PERFORMANCE REPETITIONS - The number of times every perfor-
mance test is going to be repeated. If set to zero, no “elapsed-time” statistics is col-
lected. At the same time the functional testing and the memory-usage statistics are
collected only for thelumping sub suite.

• MILLISECONDS - The time units of the “elapsed-time” plots.

• KILOBYTES - The data units of the “memory-usage” plots.

• CONFUNIT- The data units of the “confidence” plots2.

• PERFORMANCE TEST TIMEOUT SECS - The timeout (in seconds) for each perfor-
mance test invocation.

2This setting is required only for thesimulation sub suite.

5

2.4 Common test-suite files

One of the most common kind of files in the test suite is thetest list file. These files
contain lists of names which always correspond to the names of the same directory’s sub-
folders. These names should be interpreted either as test names or test sub-suite names.

Modifying test list files one can easily prevent tests or sub suites from running.In
order to do so, just place the “#” symbol (anywhere) on the line with the test (suite) name. For
example, consider./functional tests/test list – the list of functional-test sub suits.
This file contains the following data:

#############
TEST LIST
#############

#Tests for Discrete-time Markov Chains
dtmc

#Tests for Continuous-time Markov Chains
ctmc

#Tests for Discrete-time Markov Reward Models
dtmrm

#Tests for Continuous-time Markov Reward Models
ctmrm

#Tests for Continuous-time Markov Decision Processes
ctmdpi

The following modification of this file excludes thedtmc andctmdpi sub-suites from the
test runs:

#############
TEST LIST
#############

#Tests for Discrete-time Markov Chains
#dtmc

#Tests for Continuous-time Markov Chains
ctmc

#Tests for Discrete-time Markov Reward Models
dtmrm

#Tests for Continuous-time Markov Reward Models
ctmrm

#Tests for Continuous-time Markov Decision Processes
#ctmdpi

The test suite contains various permanent files, designatedfor this or that purpose. The
most common file-name extensions of these files are:

6

• *.info – test case description

• *.input – MRMC commands

• *.tra – Markov Chains (MC)

• *.lab – MC labelling

• *.rew – MC state rewards

• *.rewi – MC impulse rewards

• *.golden– expected MRMC output

• *.zip – contain *.golden files

During test runs, the test suite produces various temporaryfiles. The most common file-
name extensions of such files are listed below:

• *.out – actual MRMC output

• *.diff – diff *.out *.golden

• *.results– time statistics

• *.memstat– memory statistics

It is important to note that,*.out files are generated during every test run. If there is
no difference between the*.out and the corresponding*.goldenfile then the former one is
deleted. If some difference was detected then it is stored inthe *.diff file and the test is
marked as failed (FAIL) in the test script output, otherwise it is marked as passed (PASS).

To put it in a nutshell, if a test fails then its directory contains two new files:*.out - an
actual test output;*.diff - a difference between the*.out and the*.goldenfile. Note that,
Typically beforediff is applied, the*.out and*.goldenfiles are preprocessed by ased
script that filters out run-dependent data. That is why resulting *.diff files contain only the
relevant difference between expected and actual outputs.

Fore more details about the test-suite files, consider reading Chapters4 to 5.

7

3 Managing tests

In this chapter we briefly introduce the test-suite functionality by explaining how it can be
invoked, stopped and cleaned. We also explain how to interpret test-run outputs. For more
information about internal, functional and performance tests we refer to Chapters4 and5.

3.1 Running

In this section we are going to discuss two things:(i) how the MRMC test suite can be
invoked; (ii) how to interpret test-run outputs. Since the test suite has many purposes, we
split our explanations in several parts. First, we discuss how the test suite and its sub suites
can be run. Then, we explain how the output of theinternal and functionalsub suites has
to be interpreted. In the end, we separately talk about the outputs of thelumping- and
simulation- performancesub suites.

The only valid way for invoking MRMC testing is to use the script:

MRMC HOME DIR/test/test all.sh

When run without any parameters, this script produces the following output:

>>test_all.sh
Usage: MRMC_HOME_DIR/test/test_all.sh [options]
Options:

-all: run all tests
-internal: run internal tests
-functional: run functional tests
-performance: run performance tests
-valgrind: turn on Valgrind (mrmc has to be

compiled with ’-O0 -ggdb -g’ options)

From this it becomes clear that all available MRMC tests can be run by using:

>>test_all.sh -all

whereas for runningfunctionalandperformancesub suites we should use:

>>test_all.sh -functional -performance

A distinctive feature of the test suite is thatfunctionalandperformancetests can be run
under theValgrind profiling tool [ABFH+08]. This feature is very useful for MRMC
developers, because it allows to track memory leaks and misuses. In order to runfunctional
tests underValgrind one has to:

8

1. Erase all MRMC binaries, by runningmake clean in theMRMC HOME DIR folder.

2. Modify the theMRMC HOME DIR/makefile.def file:

a) Comment:CFLAGS += -O3

b) Uncomment:#CFLAGS += -O0 -ggdb -g

3. Compile MRMC binaries, by runningmake all in theMRMC HOME DIR folder.

4. Invoke thefunctionaltest suite by running:

>>test_all.sh -valgrind -functional

The profiling-log files (one for each test) will be located in the folder, defined by the

VALGRIND LOG FILES DIR

variable inMRMC HOME DIR/test/settings.cfg.
Note that:

• Valgrind can be supplied with various options by means of the script’svariable:
EXTRA VALGRIND PARAM.

• Our test scripts are designed forValgrind version3.3.0 or higher.

3.1.1 Internal and functional tests
An example output of theinternal- andfunctional-test run looks as follows:

>>test_all.sh -internal -functional

* NOTE: Running Internal Tests

*

* .:

sample_01..PASS
sample_02..PASS
simulation_utils_01....................................PASS

...
test_lab_reader..PASS
test_label...PASS
test_omega...FAIL
test_sparse..PASS

* NOTE: Running Functional Tests

*

* ./dtmc/pctl/syntax:

pctl_general_input_01..................................PASS
pctl_general_input_02..................................PASS
pctl_general_input_03..................................PASS

* ./dtmc/pctl/operators/basic:

pctl_basic_01..PASS

9

* ./dtmc/pctl/operators/long_run:

pctl_steady_state_01...................................FAIL
pctl_steady_state_02...................................PASS
pctl_steady_state_03...................................PASS
pctl_steady_state_04...................................PASS

...

Here, all tests except fortest omega (internal tests) andpctl steady state 01
(functionaltests), pass. In order to find out what caused the test failures, one can consider
checking the*.diff and/or*.out files of the corresponding tests. The location of these files is
defined by the test-run output.

We already know (see Section2.2) that internal andfunctionaltests are located (respec-
tively) in theinternal tests andfunctional tests sub folders of the directory:
MRMC HOME DIR/test/. The remaining path to the test location can be constructed with
the test name and the sequence of sub-suite names leading to the given test. This name se-
quence is provided in the test-run output right before each sub-suite tests are executed. For
thetest omega test, the name sequence is indicated by the output: “* .:” which means
that it is empty. For thepctl steady state 01 test, the sequence is given by the output:
“* ./dtmc/pctl/operators/long run:”. Therefore, the*.out and*.diff files for
these two tests are located in the following directories:

./internal_tests/test_omega

./functional_tests/dtmc/pctl/operators/long_run/pctl_steady_state_01

3.1.2 Lumping-performance tests

Performance tests forlumping are designed to compare model-check time and memory
consumption when running MRMC (on the same models, with the same input parameters and
formulae to verify) in a simple model-checking mode, in “formula-independent” lumping
mode, and in “formula-dependent” lumping mode. Note that, for the latter two the model-
check time includes time required for lumping.

A typical output of thelumping sub suite is given in Figure3.1. Here, we run perfor-
mance testing on the well known Randomized Mutual Exclusion(rme) case study [PZ86].
This study provides an algorithm guaranteeing that forN processes trying to access a criti-
cal section, at any timet there is at most one process in the critical-section phase and every
process can eventually enter the critical section. Therme test is located in:

./performance tests/lumping/dtmc lumping/rme

This location can be easily deduced from the lines6 to 8 of Figure3.1. Note that, therme
test consists of the following test cases:

mrmc RANDOMIZED N04, ... ,mrmc RANDOMIZED N06.

These correspond to the model parameterN being equal to4, . . . , 6.
Execution of everylumping test consists of running each of its test cases and thengen-

erating overall statistics. Execution of every test case consists of several stages:generating
a model, testing MRMC functionality, gathering statistics. Below, we briefly introduce all of
these stages using (to a certain extent) the output providedin Figure3.1.

10

1 >>test_all.sh -performance
2 ***
3 * NOTE: Running Performance Tests
4 *
5 Each test will be repeated ’10’ times.
6 - lumping
7 - dtmc_lumping
8 -- rme:
9 mrmc_RANDOMIZED_N04:

10 Generating the modelDONE
11 Functional test:
12 rme01:
13 mrmc_RANDOMIZED_N04.pctl.rme01: +.................PASS
14 mrmc_RANDOMIZED_N04.pctl.-ilump.rme01: +..........PASS
15 mrmc_RANDOMIZED_N04.pctl.-flump.rme01: +..........PASS
16 Performance test:
17 rme01: 0:+++ 1:+++ 2:+++ 3:+++ 4:+++ 5:+++ 6:+++ 7:+++
18 8:+++ 9:+++ DONE
19 mrmc_RANDOMIZED_N05:
20 Generating the modelDONE
21 Functional test:
22 rme01:
23 mrmc_RANDOMIZED_N05.pctl.rme01: +.................PASS
24 mrmc_RANDOMIZED_N05.pctl.-ilump.rme01: +..........PASS
25 mrmc_RANDOMIZED_N05.pctl.-flump.rme01: +..........PASS
26 Performance test:
27 rme01: 0:+++ 1:+++ 2:+13
28 ...

Figure 3.1: An example run of thelumping sub-suite output.

Generating models

First, for each test case, the MRMC model is generated from the PRISM model. In every
test-run output this stage is indicated by:

Generating the modelDONE

See for example lines10 and 20 of Figure 3.1. These lines contain model-generation
statements for the test cases:mrmc RANDOMIZED N04 andmrmc RANDOMIZED N05.
The PRISM’s*.log.out file, containing data about the model-generation process, is named
after the test case, and is located in the test-case folder, e. g., formrmc RANDOMIZED N03
it is:

./rme/mrmc RANDOMIZED N03/mrmc RANDOMIZED N03.prism.log.out

The generated MRMC models are stored in the folder defined by theTMPDIR variable
of the./test/settings.cfg script (see Section2.3). It is desirable that this folder
is located on the hard drive of the machine that runs the tests. Otherwise, test runs can be
affected by the network-speed fluctuations.

11

./rme/option list ./rme/input list
pctl rme01.input
pctl -ilump
pctl -flump

Table 3.1: Theoption list andinput list files of therme test.

Testing MRMC functionality

Functional testing is performed on every test-case model with the same input data as for the
further performance testing. The reason to do so is that, before performance testing, we want
to be sure that MRMC produces correct results.

For every test (such asrme) the list of used MRMC command-line parameters1 is located
in the option list file and the list of*.input files, containing MRMC commands and
verification formulae2, is located in theinput list file.

For therme test, these files are:./rme/option list and./rme/input list.
The content of the files is given in Table3.1. For every test case, we run MRMC on all
various combinations of command-line options and the inputs given in these files. This is
reflected in lines12–15 and22–25 of Figure3.1.

Note that, when running functional part of thelumping performance tests, the output
“-” indicates that the test run was terminated due to the time-out3, whereas “+” indicates
that the run is terminated normally. Also, the test output can contain a line similar to the
following one:

mrmc_RANDOMIZED_N05.pctl.rme01: +.................????

This means that the test run is finished but the results are still being analyzed. After a short
while,???? will change intoFAIL orPASS. The latter indicate whether the functional test
failed or passed.

Gathering statistics

For performance testing, every test case on every combination of inputs is run several times.
The number of repetitions is stated in the very beginning of theperformance-suite output,
see e. g. line5 in Figure3.1, and is defined by the

NUMBER OF PERFORMANCE REPETITIONS

variable of the./test/settings.cfg script. Each of performance runs is indicated
in thePerformance test: section of the test-case output, e. g. see lines17 and27 in
Figure3.1.

For a better usability, our scripts report the time progress(in tenths of a second) of every
test run. For instance, line27 in Figure3.1 indicates that the current test run has been be-
ing executed for about1.3 seconds. Note that, the reported time is not exact. The time-out
script wakes up every0.1 second in order to check for the possible time-out and to collect the

1See Section5.1 of the MRMC manual.
2See Chapters6 and7 of the MRMC manual.
3See Section2.3for more details.

12

memory-usage data. This script also prints the time-progress information. Therefore, the ac-
tual time interval between the time-sampling moments isat least0.1 second. One might want
to take this into account when setting the value ofPERFORMANCE TEST TIMEOUT SECS.

Generating overall statistics

For a given test, after all performance-test runs are finished, the statistical data is collected
and the results are stored in the from of*.epsplots and*.dat (text) files. The latter ones
contain statistical data used to produce the corresponding*.epsplots. Figure3.2 shows a
part of the statistics-generation log for therme test. In this output, lines18 to 21, one can
see that the overall memory statistics is represented by four plots:

• rme01.memory.mvsz.eps – maximum used virtual-memory size (MVSZ),

• rme01.memory.mrss.eps – maximum used resident-set size (MRSS),

• rme01.memory.avsz.eps – average used virtual-memory size (AVSZ),

• rme01.memory.arss.eps – average used resident-set size (ARSS).

Another type of plot we produce is the “model-check” time statistics. For therme test it is
present in therme01.performance.eps file. Note that, the resulting statistical data is
always stored in the test directory, e. g../lumping/dtmc lumping/rme for the case of
therme test.

For more details about the resulting-statistics files consider reading Section5.1.

3.1.3 Simulation-performance tests

Performance tests forsimulations are designed to compare simulation-based model-
checking algorithms implemented in MRMC, Ymer and VESTA. Here, we collect four types
of statistic:

• “model-check time” – the same as for thelumping tests.

• “memory-consumption” – the same as for thelumping tests.

• “actual confidence levels” – the % of correct answers, produced by the tools when
model checking given properties on given models.

• “number of used observations” – the number of states sampledin order to verify vari-
ous model-checking formulae.

Note that, all the test models and tool parameters were made sure to be equivalent. For
more details, read Section7.1 of [Zap08].

A typical output of thesimulations sub suite is given in Figure3.3. Here, we run per-
formance testing on the well known Cyclic Server Polling System (cps) case study [IT90,
You05b, You05a, HKMKS00, SVA04, YKNP06, YS06]. The case study describes a polling
system consisting ofN equivalent stations and a server. Each station has a single-message
buffer and the stations are attended by a single server in a cyclic order. The server starts by
polling the first station. If this station has a message in itsbuffer (busy), the server starts

13

1 ...
2
3 ------------ Collecting statistics and preparing data ------------
4 mrmc_RANDOMIZED_N03:
5 rme01:
6 mrmc_RANDOMIZED_N03.pctl.rme01DONE
7 mrmc_RANDOMIZED_N03.pctl.-ilump.rme01DONE
8 ...
9 Converting the statistics into the gnuplot data files:

10 rme01.memory.dat:
11 Reading data file: rme.param
12 Reading data file: rme01.pctl.mvsz.memory.statistics
13 Reading data file: rme01.pctl.mrss.memory.statistics
14 ...
15 --
16 Writing gnuplot-data file: rme01.memory.dat
17 Generating:
18 rme01.memory.mvsz.eps
19 rme01.memory.mrss.eps
20 rme01.memory.avsz.eps
21 rme01.memory.arss.eps
22 --==WE ARE DONE==--
23 ...

Figure 3.2: Producing statistical results for therme test.

serving the station. Once the station has been served, or if there was no message in the buffer
(idle), the server start polling the next station. After polling all stations, the server returns
to polling the first station and thus beginning a new cycle. The polling and service times are
exponentially distributed with ratesγ = 200 andµ = 1. The arrival rate of messages at a
station is equal for all stations and is exponentially distributed with rateλ =

µ

N
.

Thecps test is located in:

./performance tests/simulations/ctmc/cps

This location, the same way as it was done in Section3.1.2, can be easily deduced from the
output provided in Figure3.3. Note that, thecps test consists of the following test cases:

CYCLIC POLLING N03, ... ,CYCLIC POLLING N18.

These correspond to the model parameterN ∈ {3, 6, 9, 12, 15, 16, 17, 18}.
Execution of everysimulations test consists of running each of its test cases and

thengenerating overall statistics. Execution of every test case consists of several stages:
generating a model, gathering statistics. Below, we briefly introduce all of these stages
using (to a certain extent) the output provided in Figure3.3.

Generating models

The model-generation part of thesimulations tests is the same as for thelumping
tests. Note that, the MRMC models are generated from the PRISM models. Ymer directly
accepts PRISM models and VESTA uses its own input models, that were made sure to be
equivalent to the used PRISM models.

14

1 >>test_all.sh -performance
2 ***
3 * NOTE: Running Performance Tests
4 *
5 Each test will be repeated ’3’ times.
6 - simulations
7 - ctmc
8 -- cps:
9 CYCLIC_POLLING_N03:

10 Generating the model:DONE
11 Simulating the test:
12 cps01: 0:m+y+y+v+ 1:m+y+y+v+ 2:m+y+y+v+ DONE
13 cps02: 0:m+y+y+ 1:m+y-y+ 2:m+y+y+ DONE
14 cps03: 0:m+v+ 1:m+v+ 2:m+v+ DONE
15 cps04: 0:m+ 1:m+ 2:m+ DONE
16 CYCLIC_POLLING_N06:
17 Generating the model:DONE
18 Simulating the test:
19 cps01: 0:m+y+y+v+ 1:m+y+y+v+ 2:m+y+y+v+ DONE
20 cps02: 0:m-y+y- 1:m+y+y+ 2:m+y+y- DONE
21 cps03: 0:m+v+ 1:m+v+ 2:m+v+ DONE
22 cps04: 0:m+ 1:m+ 2:m+ DONE
23 ...

Figure 3.3: An example run of thesimulations sub-suite output.

Gathering statistics

The parameters influencing the number of repetitions of eachtest run and its timeout are
the same as for thelumping-performance tests. One of the main differences from the
lumping tests is that we do not just run MRMC but also Ymer and VESTA. Similar to
what we have for thelumping tests, for each case study, e. g.cps, we can have several test
cases that typically differ only by the models parameters. In each test case, we compare per-
formance of several different tools or the same tool but withdifferent command-line options
and/or inputs.

Let us consider the example run in Figure3.3. It is easy to see, line5, that every tool run
(on a given test case, with selected command-line options and inputs), will be repeated3
times. Moreover, for every test case, after the model is generated (e. g. line10), the sim-
ulation tests are invoked. These tests are performed in a “per input” (csp01, csp02,
csp03, andcsp04) manner. For example, on line12 we can see that for the test case
CYCLIC POLLING N03 on the inputcps01 we perform three repetitions marked from
0 to 2. In each repetition we consequently run MRMC – denoted by theletter “m”, Ymer
– denoted by the letter “y” and VESTA – the letter “v”. Ymer is run twice because the
command-line options for the first and second invocations differ. Unlike forlumping tests,
the “+” output indicates that the tool produced proper model-checking results, otherwise we
have “-”. The latter check is required for collecting the “actual confidence levels” statistics.

Remember that every input, e. g.cps01, contains a particular formulae that is to be model
checked. In our case, we verify CSL formulae but not all of theconsidered tools support this
logic to the full extent. Thus, it is possible that on a particular input we can only run some

15

of the tools, but not all of them. For example, it is the case with the inputcps03. For this
input we can only run MRMC and VESTA, but not Ymer.

Generating overall statistics

For a given test, after all performance-test runs are finished, the statistical data is collected
and the results are stored in the from of*.epsplots and*.dat (text) files. The latter ones
contain statistical data used to produce the corresponding*.epsplots. Figure3.4 shows a
part of the statistics-generation log for thecps test. In this output, lines3, 27, 37, and40

divide the output into four parts and show in which order the statistical data is generated. For
every input nameINP and a set of tools run on this input we produce four plots:

• INP.memory.mvsz.eps – the “memory-consumption” statistics (MVSZ only), the
same as for thelumping tests.

• INP.performance.eps – the “model-check time” statistics, the same as for the
lumping tests.

• INP.confidence.eps – the “actual confidence levels” statistics.

• INP.sample.eps – the “number of used observations” statistics.

The resulting statistical data is always stored in thestatistics sub folder of the test
directory, e. g../simulations/ctmc/cps/statistics for the case of thecps test.

For more details about the resulting-statistics files consider reading Section5.2.

3.2 Stopping
The internal- and/or functional- test runs can be terminated by simply pressingCtrl-C in the
console where they were invoked. The performance tests run MRMC in the background.
Therefore, in order to halt these tests, it is not enough to terminate the test scripts by press-
ing Ctrl-C. If performance tests are to be stopped, theMRMC HOME DIR/test/stop.sh
script shall be used. Just run it during the performance-test execution from another console.
A typical output of this script looks as follows:

>> stop.sh
+++++++++++++++++ Stopping tests +++++++++++++++

* Iteration 1: Some unstopped processes detected.
1. Killing the main script, PID: 18525
2. Killing the test scripts, PID: 27071
3. Killing the performance test scripts,

PID: 27373 27088 27083 27077
4. The MRMC processes is/are not running
5. The YMER processes is/are not running
6. Killing the JAVA processes, PID: 5081
7. Killing the PRISM processes, PID: 5546

* Iteration 2: Everything is stopped.
+++++++++++++++++++++ Done +++++++++++++++++++++

16

1 ...
2
3 ------------ Collecting PERFORMANCE statistics and preparing data ------------
4 CYCLIC_POLLING_N03:
5 cps01:
6 CYCLIC_POLLING_N03.cps01.mrmc.commonDONE
7 CYCLIC_POLLING_N03.cps01.ymer.commonDONE
8 CYCLIC_POLLING_N03.cps01.ymer.--pestimateDONE
9 CYCLIC_POLLING_N03.cps01.vesta.commonDONE

10 cps02:
11 ...
12
13 Converting the statistics into the gnuplot data files:
14 statistics/cps01.performance.dat:
15 Reading data file: cps.param
16 Reading data file: statistics/cps01/cps01.mrmc.common.performance.statistics
17 Reading data file: statistics/cps01/cps01.ymer.common.performance.statistics
18 Reading data file: statistics/cps01/cps01.ymer.--pestimate.performance.statistics
19 Reading data file: statistics/cps01/cps01.vesta.common.performance.statistics
20 --
21 Writing gnuplot-data file: statistics/cps01.performance.dat
22 Generating:
23 statistics/cps01.performance.*.eps
24 --==WE ARE DONE==--
25 ...
26
27 ------------ Collecting MEMORY statistics and preparing data ------------
28 CYCLIC_POLLING_N03:
29 cps01:
30 CYCLIC_POLLING_N03.cps01.mrmc.commonDONE
31 CYCLIC_POLLING_N03.cps01.ymer.commonDONE
32 CYCLIC_POLLING_N03.cps01.ymer.--pestimateDONE
33 CYCLIC_POLLING_N03.cps01.vesta.commonDONE
34 cps02:
35 ...
36
37 ------------ Collecting SAMPLE statistics and preparing data ------------
38 ...
39
40 ------------ Collecting CONFIDENCE statistics and preparing data ------------
41 ...

Figure 3.4: Producing statistical results for thecps test.

Note that, this script will terminate all Java applicationsand/or MRMC, PRISM instances
running on the same machine. Yet, we assume that this script is sufficiently safe, since
performance testing should be done on a stand-alone machinededicated specifically for the
testing purpose.

3.3 Cleaning
Some test runs result in temporary files, such as*.out, *.diff , and*.statisticsfiles, and etc.
These files can be automatically erased by executing:

MRMC_HOME_DIR/test/test/clean_all.sh

When using this script, note that:

• *.epsand*.dat files produced by performance tests are not removed, so the resulting
data is preserved.

17

• In order to run performance test without deriving results from the previous runs run-
ningclean all.sh is compulsory!

• The temporary files are only removed for “enabled” tests, i. e. the test suites and test
that are not commented out in the correspondingtest list files.

18

4 Internal and functional tests

In this section we briefly overview the structure of the internal- and functional-test sub suites.

MRMC HOME DIR/test/internal tests Stores tests for the MRMC core. These
tests are C source files that perform unit testing of some of the MRMC components. The
structure of this sub suite is similar to the structure of thefunctional sub suite.

MRMC HOME DIR/test/functional tests/ Stores tests for the MRMC interface
and the model-checking algorithms. The structure of this sub suite is as follows:

• ./test list – the list of tests

• ./test.sh – runs tests fromtest list

• ./clean.sh – removes temporary files

• ./dtmc/ – tests for Discrete Time Markov Chains

• ./ctmc/ – tests for Continuous Time Markov Chains

• ./dtmrm/ – tests for Discrete Time Markov Reward Models

• ./ctmrm/ – tests for Continuous Time Markov Reward Models

• ./ctmdpi/ – tests for Continuous Time Markov Decision Processes

The test suite also contains several supplementary files:

• ./out2golden.sh – substitutes the*.goldenfiles with the pre generated*.out files
for the given list of tests. Has to be invoked as:out2golden.sh test list.

• ./sed.rules – containssed rules for extracting meaningful data from the*.golden
and*.out files, before applyingdiff.

• ./pf.sh – performs filtering for*.goldenand*.out files. Also, invokesdiff and
reportsPASS/ FAIL. This script is called fromtest.sh.

19

5 Performance tests

At present, the performance test suite of MRMC:

MRMC_HOME_DIR/test/performance_tests

has the following structure:

• ./test list – the list of tests suites

• ./test.sh – runs test suites fromtest list

• ./clean.sh – removes temporary files

• ./scripts/awk/ – scripts (awk) for processing statistical data

• ./scripts/shell/ – common scripts used for gathering statistics

• ./scripts/sed/ – scripts (sed) required for extracting statistical data

• ./scripts/bin/ – contains the pre-compiled bash shell binary1

• ./scripts/gcc/ – supplementary programs needed for test runs

• ./lumping/ – the test suite for the bisimulation (lumping)

• ./simulations/ – the test suite for the simulations-based model checking

Remember that the performance test suite consists of two subsuites, namely:lumping –
tests for bisimulation minimization [KKZJ07], andsimulations – tests for the discrete-
event simulation engine [Zap08, KZ09]. Although sharing some common scripts, located in
the./scripts/ directory, these sub suites are quite different. The formerone is simpler
and therefore we will first discuss its structure, how its performance tests are run, and what
statistics is produced. Then, we extend our explanations tothe latter sub suite.

5.1 Lumping-performance tests

An approximate structure of thelumping sub suite is as follows:

• ./scripts/awk/ –awk scripts for computing reduction factors and comparing the
probability values with the given error bound

1With disabled printing of messages about killed processes.

20

• ./scripts/sed/ – sed scripts which allow to remove unnecessary information
from the MRMC output

• ./scripts/shell/ – shell scripts for: running tests, coordinating the statistics
generation, and other supplementary scripts

• ./dtmc lumping/ – the sub suite with tests for DTMCs

• ./ctmc lumping/ – the sub suite with tests for CTMCs

• ./dtmrm lumping/ – the sub suite with tests for DMRMs

• ./ctmrm lumping/ – the sub suite with tests for CMRMs

When thelumping-performance tests are run they produce two types of statistics:

• Model-check time2 – based on the “elapsed-time” output of MRMC:

– *.performance.statistics – raw statistical-data files. A name of each
file is formed from the input-file name plus the command-line options of MRMC.

– *.performance.dat – post-processed statistical data files which are used
with gnuplot scripts to generate performance plots.

– *.performance.eps– the performance plots. These files are generated from
the corresponding*.performance.dat files.

• Memory Consumption – based on the results provided by theps utility:

– *.TYPE.memory.statistics – raw statistical-data files. A name of each
file is formed from the input-file name plus the command-line options of MRMC.
HereTYPE ∈ {mvsz, mrss, avsz, arss}.

– *.memory.dat files – post-processed statistical data files which are used with
gnuplot scripts to generate memory-consumption plots.

– *.TYPE.memory.eps files – the memory-consumption plots. These files are
generated from the corresponding*.memory.dat files.

The memory-consumption statistics is based on the output ofthe standardps utility
(Linux) which samples the memory usage of MRMC process approximately every0.1 sec-
ond. This sampling is done only during the functional-test part of each performance test.

Note that, the./lumping/scripts/shell/test suite.sh script, used in per-
formance testing, employs a pre-compiled bash interpreter, located in the

MRMC HOME DIR/test/performance tests/scripts/bin/bash

directory. The reason for using this binary is that, in case of a test-case timeout, MRMC
execution is terminated by invoking thekill command. If using a standard shell binary,
this procedure results in printing an unwanted text to the console. Since such bash output
breaks the structure of the test-script output, we use the modified version of bash.

In cases when it is undesirable or impossible to use the modified shell binary, one has to
substitute the first line oftest suite.sh in the following manner:

Change “#!../../../scripts/bin/bash -u” into “#!bash -u”.

2Only when the value ofNUMBER OF PERFORMANCE REPETITIONS is > 0, see Section2.3

21

5.1.1 Test structure

Let us consider thelumping-test structure, using the Workstation Cluster test (wscl) as an
example. Thewscl test is located in the./lumping/ctmrm lumping/wscl directory.
To prevent this test from being executed one can modify thetest list file located in the
ctmrm lumping folder. Thewscl test’s directory has the following structure:

• ./mrmc WORKSTATION CLUSTER NXX/ – the test case directory. It contains a
test-invocation script and golden files. The test-case (MRMC) model is generated
from wscl.sm andwscl.csl, with the model parameterN = XX.

• ./wscl.sm – the PRISM model of Workstation Cluster.

• ./wscl.csl – the PRISM property file containing the model labeling.

• ./input list – the list of available*.input files. Here, we have only one input:
wscl01. In principle, it is possible to define several input files forthe givenwscl
model and to use them for evaluating performance of MRMC on several different
model-checking properties.

• ./wscl01.input – the MRMC input file. Each tests can have several inputs,
each of which is a set of MRMC command-prompt commands, that include a model-
checking property. Thewscl01.input file contains the time- and reward-bounded
until property and also thequit command which isobligatoryfor any*.input file.

• ./option list – the list of command-line options MRMC should be invoked with:
For the samewscl01.input file, each of theoption list file lines is used to
form the MRMC command-line parameters. In case ofwscl, the file’s content indi-
cates that MRMC should be run three times:first in the CSRL mode without lump-
ing; secondwith the formula-independent lumping;third with the formula-dependent
lumping. Note that, any changes done to theoption list file must be consistent
with themultiple list file.

• ./input.data.files – the list of MRMC input files. Necessary, because differ-
ent models (e. g. CTMC vs. CMRM) require different number of MRMC input files.

• ./multiple list – the number of “Total Elapsed * Time * :” lines in
the MRMC output. These numbers are related (line wise) to theoptions from the
option list file. Here,1 means that if MRMC is run, e. g. with thecsrl orcsrl
-flump option, there is just one “elapsed-time” output, whereas for 2, e. g. forcsrl
-ilump option, indicates that there are two. In case of the-ilump option, the first
output corresponds to the lumping time and the second to the model-checking time.

• ./wscl.param – the values ofN with which MRMC models are generated from
the PRISM model. This file determines theX-axes values on the generated statistics
plots (produced usinggnuplot). After a test execution thewscl.param file values
are copied into the first column of the (generated)*.dat file.

• ./wscl01.performance.gnuplot – thegnuplot template for the “model-
check time” statistics. This file contains several “dummy” names, as:

22

INPUT, TIME UNIT, MIN, MAX.

These are automatically substituted with the actual valuesby the statistics script. If
any changes are to be done to this file, they must be consistentwith the changes in the
option list file.

• ./wscl01.memory.gnuplot – the template file for the memory-consumption
statistics. This file is similar to./wscl01.performance.gnuplot.

It is important to note that:

• If a test case fails the*.out and*.diff files are placed in the corresponding directory.

• The test-case golden files (*.golden) are stored in the*.zip archive located in the test-
case directory. These files are automatically extracted during the functional part of
testing.

• The PRISM output, produced while generating MRMC models, can be found in the
*.prism.log.outfile of the corresponding test-case directory.

Further, we discuss alumping-performance test’s structure and its statistical outputsin
mode detail.

5.1.2 Test statistics

Thelumping-performance tests generate two types of statistics by means of the

./lumping/scripts/shell/statistics.sh

script. Below, we discuss the resulting-statistics files indetails. Note that, these files are
placed in the root of each test’s directory.

Model-Check Time Statistics:

• *.performance.statistics– Contain average model-check times for the test test-cases.
The file name is formed by the*.input file name plus the command-line options of
MRMC from theoption list file. For example, in this particular case one may
expect the following statistic files:

– wscl01.csrl.performance.statistics

– wscl01.csrl.-ilump.performance.statistics

– wscl01.csrl.-flump.performance.statistics

Each of these files contains one column of values. Let us discuss how these files are
produced. For the ”wscl” test we have 7 test cases:

mrmc WORKSTATION CLUSTER N01 , . . . , mrmc WORKSTATION CLUSTER N07

In each directoryTEST CASE NAME (after the test-case is finished) we have the fol-
lowing files:

23

– TEST CASE NAME.csrl.wscl01.results

– TEST CASE NAME.csrl.-ilump.wscl01.results

– TEST CASE NAME.csrl.-flump.wscl01.results

which contain “elapsed-time” information produced by MRMCfor the predefined
number of test-case repetitions:NUMBER OF PERFORMANCE REPETITIONS (see
Chapter2.3). Then, for the test casemrmc WORKSTATION CLUSTER N01 the aver-
age values are computed for each file:

– mrmc WORKSTATION CLUSTER N01.csrl.wscl01.results

– mrmc WORKSTATION CLUSTER N01.csrl.-ilump.wscl01.results

– mrmc WORKSTATION CLUSTER N01.csrl.-flump.wscl01.results

and are (respectively) placed to be the first row elements of the

– wscl01.csrl.performance.statistics

– wscl01.csrl.-ilump.performance.statistics

– wscl01.csrl.-flump.performance.statistics

files. Further, the average values formrmc WORKSTATION CLUSTER N02 are com-
puted and placed into the second rows, and etc. For more details see:

./performance tests/scripts/awk/average.awk.

• *.performance.dat– This is the input file for the*.performance.gnuplotscript. The
file is formed by placing the columns from the*.param and*.performance.statistics
files parallel to each other. Every*.input file results in its own*.performance.datfile.
Forwscl, we only have:wscl01.performance.data. For more details see:

./performance tests/scripts/awk/arrange table.awk.

• *.performance.eps– Contains the plot for the data from the the corresponding*.data
file. In case ofwscl test we obtain:

wscl01.performance.eps

The time units, used when generating performance statistics, are defined by the value of the
MILLISECONDS variable (see Chapter2.3).

Memory-Consumption Statistics: Before going further, let us note that for the mem-
ory statistics we collect the following data, based on the output of the standardps util-
ity [DC03]:

• VSIZE (Virtual memory size) – The amount of memory the process is using. This
includes the amount in RAM and the amount in swap.

• RSS (Resident Set Size) – The portion of a process that exists in physical memory
(RAM). The rest of the program exists in swap. If a computer has not used swap, this
number will be equal toVSIZE.

24

Further we assume thatTYPE is one of:

• mvsz – The results for the Maximum measuredVSIZE

• mrss – The results for the Maximum measuredRSS

• avsz – The results for the Average measuredVSIZE

• arss – The results for the Average measuredRSS

Below, we describe data files produced during gathering of the memory statistics:

• *.TYPE.memory.statistics– These files are constructed out of*.memstattest-case files.
In eachTEST CASE NAME directory (after the functional part of testing is finished)
we have the following files:

– TEST CASE NAME.csrl.wscl01.memstat

– TEST CASE NAME.csrl.-ilump.wscl01.memstat

– TEST CASE NAME.csrl.-flump.wscl01.memstat

Each of these files has three rows of two elements:

1. MVSZ RSS – the pair ofps results with the maxVSZ

2. VSZ MRSS – the pair ofps results with the maxRSS.

3. AVSZ ARSS – the average over allVSZ RSS pairs.

For more details on howAVSZ andARSS are computed, see:

./performance tests/scripts/awk/on the fly average.awk

As a result, for every test case we have the following files:

– *.csrl.TYPE.memory.statistics

– *.csrl.-ilump.TYPE.memory.statistics

– *.csrl.-flump.TYPE.memory.statistics

They are generated in such a way that each of them has one column of TYPE values.
For example, ifTYPE = avsz then theAVSZ value from:

mrmc WORKSTATION CLUSTER N01.csrl.wscl01.memstat

is placed into the first row ofwscl01.avsz.memory.statistics.
TheAVSZ value from:

mrmc WORKSTATION CLUSTER N02.csrl.wscl01.memstat

goes into the second row, and etc. For more details see:

./performance tests/scripts/awk/split memory statistics.awk

25

• *.memory.datfile – The input file for the corresponding*.memory.gnuplotscript. This
file is formed from the*.param plus *.TYPE.memory.statisticsfiles data. For each
.input its own.${TYPE}.memory.datfiles are generated. In this example case it is
just: wscl01.memory.data. For more details see:

./performance tests/scripts/awk/arrange table.awk

• *.TYPE.memory.eps– Contains the plot for the values from the corresponding*.data
file. In case ofwscl test we obtain:

– wscl01.mvsz.memory.eps

– wscl01.mrss.memory.eps

– wscl01.avsz.memory.eps

– wscl01.arss.memory.eps

The time units, used when generating memory statistics, aredefined by the value of the
KILOBYTES variable (see Chapter2.3).

Additional information about thelumping sub suite can be found in the comments of
the test scripts and other files.

5.2 Simulations-performance tests

An approximate structure of thesimulations sub suite is as follows:

• ./scripts/sed/ – sed scripts that allow to filter tool outputs, for
TOOL ∈ { MRMC, Ymer, VESTA}:

– TOOL.main.rules – removes unnecessary data from the output ofTOOL.

– TOOL.result.rules – removes all (remaining) data except for the model-
checking result.

– TOOL.sample.rules – removes all (remaining) data except for the number
of used observations.

– TOOL.time.rules– removes all (remaining) data except for the model-check
time.

• ./scripts/shell/ – shell scripts for: running tests, checking correctness ofthe
model-checking result, and coordinating the statistics generation.

• ./scripts/shell/invoke tools – shell scripts for tool invocations.

• ./scripts/shell/extract data – shell scripts for extracting number of sam-
ples and model-checking time from the tool outputs.

• ./scripts/shell/generate statistics – scripts used for generating all
supported types of statistics.

• ./ctmc/ – the sub suite with tests for CTMCs.

26

When thesimulations-performance tests are run, for every test and each of its inputs,
test-scripts produce four types of statistics:

• Model-Check Time – similar to the files produced by thelumping sub suite:

– *.performance.dat – post-processed statistical data files which are used
with gnuplot scripts to generate “model-check time” plots.

– *.performance.eps – the “model-check time” plots, generated from the
corresponding*.performance.dat files.

• Memory Consumption – similar to the files produced by thelumping sub suite:

– *.memory.dat files – post-processed statistical data files which are used with
gnuplot scripts to generate memory-consumption plots.

– *.memory.mvsz.eps files – the memory-consumption plots, only for the
MVSZ statistics (Generated from the corresponding*.memory.dat files.).

• Actual Confidence Levels– the % of correct answers to the model-checking problem,
per tool and per test case. The % value is computed relative tothe number of the test-
case repetitions.

– *.confidence.dat– post-processed statistical data files which are used with
gnuplot scripts to generate actual confidence-level plots.

– *.confidence.eps – the actual confidence-level plots, generated from the
corresponding*.confidence.dat files.

• Number of Used Observations– the average number of observations needed for ver-
ifying a given formula on a given test-case model (per tool and its command-line op-
tions). The average value is computed relative to the numberof the test-case repeti-
tions.

– *.sample.dat – post-processed statistical data files which are used with gnu-
plot scripts to generate number-of-used-observations plots.

– *.sample.eps – the number-of-used-observations plots, generated from the
corresponding*.sample.dat files.

Note that, the resulting statistical data is stored in thestatistics sub folder of each test.
Further, we discuss asimulations-performance test’s structure and its statistical out-

puts in mode detail.

5.2.1 Test structure

Let us consider thesimulations-test structure, using the Cyclic Server Polling System
test (cps) as an example. Thecps test is located in the./simulations/ctmc/cps
directory. To prevent this test from being executed one can modify the test list file
located in thectmc folder. Thecps test’s directory has the following structure:

• ./CYCLIC POLLING NXX/ – the test case directory. It contains golden files, the
PRISM model:*.sm, and an equivalent VESTA model:*.ctmc. The test-case model
for MRMC is generated from the PRISM model using the*.sh script. Note that, the

27

value of the model parameterN = XX is hard coded into the PRISM and VESTA
models of each test case.

• ./cps.csl – the PRISM property file containing the model labelling (thesame for
all test cases).

• test list – the list of enabled test cases, this list is managed the sameway as
any othertest list file. Note that, if a test case is disabled then one has to do
corresponding changes in thecps.param file.

• cps.param – the values ofN for each test case. This file determines theX-axes
values on the generated statistics plots (produced usinggnuplot). After a test exe-
cution thecps.param file values are copied into the first column of the (generated)
*.dat files.

• ./input list – the list of available inputs. The inputs here have a much more
complex structure. Each input is represented by a folder in the./inputs directory.

• ./inputs/cps01/ – contains data related to thecps01 input:

– ./tools list – the list of tools that are going to be tested with this input,

– ./*.gnuplot – thegnuplot template scripts for generating plots for the
corresponding statistic,

– ./mrmc/ – the MRMC parameters for thecps01 input:

∗ ./common.options – the sequence of common command-line options
used in every invocation of MRMC with this input.

∗ ./files – the script for providing MRMC with the right input files.
∗ ./input – the sequence of MRMC command-prompt commands and ver-

ification properties. This file is similar to the*.input files of thelumping-
performance sub suite,

∗ ./options – the list of additional MRMC command-line options. In this
file each (not commented and possibly empty) line corresponds to a different
set of extra tool options. Remember that, common options have to be placed
in the./common.options file. If ./options contains more than one
uncommented line, even if it is empty, the tool will be run several times,
each time taking a different set of options. This way one can,e. g., run Ymer
with and without--estimate-probabilitiesoption, and treat these
two invocations as if they are for two different tools. This file is similar to
theoption list files of thelumping-performance sub suite.

– ./vesta/ – the VESTA parameters for the input:cps01. Has the same struc-
ture as./mrmc/.

– ./ymer/ – the Ymer parameters for the input:cps01. Has the same structure
as./mrmc/.

Note that, it is possible to have tests that, as a part of one input, include running MRMC with
the same command-line options but different command-prompt parameters, e. g.cps05.
Consider the folder./inputs/cps05, there one can find sub folders namedmrmc h h a,

28

mrmc p o a, and alike. All of them correspond to running MRMC with the same command-
line options, and the same property to verify. The difference is only in the parameters set
from the tool’s command prompt. Basically, here each time MRMC is treated as a new
tool. For this to work, one has have tool-folder names starting withmrmc. Then, if no tool-
specific scripts are provided, e. g. for the tool namedmrmc p o a, the test suite uses the
default MRMC scripts. For more details see:

./simulations/scripts/shell/test suite.sh.

5.2.2 Test statistics

Thesimulations-performance tests generate statistics by means of the following script:

./simulations/scripts/shell/statistics.sh

Note that, the initially-gathered statistical data is placed in thestatistics sub folder
of each test case. Such a directory always contains sub folders corresponding to the en-
abled inputs. In other words, for each test caseCYCLIC POLLING NXX and the input
cpsYY, whereXX ∈ {03, 06, 09, 12, 15, 16, 17, 18} andYY ∈ {01, 02, 03, 04}, the
initial statistics is located inside the following folder:

./CYCLIC POLLING NXX/statistics/cpsYY

Below, we discuss the statistics-generation process and the produced files in details.

Model-Check Time Statistics: The time statistics is collected in a way similar to how
it is done for thelumping-performance tests. The model-check times are first stored in the
*.timestatfiles. For example, the file:

CYCLIC POLLING N03.cps01.mrmc.common.timestat

contains model-check times reported by MRMC for each of

NUMBER OF PERFORMANCE REPETITIONS

repetitions, when run on thecps01 input. Note that, the sub string “common” in the file’s
name indicates that MRMC is run with the common options, given in the file:

./cps/inputs/cps01/mrmc/common.options.

Note that,./cps/inputs/cps01/mrmc/options only contain one empty line (i. e.
no extra options). In contrast, the files:

CYCLIC POLLING N03.cps01.ymer.common.timestat, and
CYCLIC POLLING N03.cps01.ymer.--estimate-probabilities.timestat

contain model-check times reported by Ymer, when run with the options defined by the con-
tent of ./cps/inputs/cps01/ymer/common.options and, respectively, the first
(empty) and second (non-empty) line of./cps/inputs/cps01/ymer/options.

When the test runs forcps are finished the time statistics is produced by the next steps:

29

1. The*.performance.statisticsfiles are produced and stored in the directory:

./cps/statistics/cpsYY

For example,cps01.mrmc.common.sample.statistics contains average,
for each test case, model-check times reported by MRMC on thecps01 input. The
corresponding files for Ymer are

cps01.ymer.common.performance.statistics, and
cps01.ymer.--estimate-probabilities.performance.statistics

The first file corresponds to running Ymer with the common options and the second
one for running Ymer with the common options with an extra option:

--estimate-probabilities,

as defined by the files:./cps/inputs/cps01/ymer/common.options, and
./cps/inputs/cps01/ymer/options.

2. The./cps/statistics/cpsYY.performance.dat files are produced. For
each inputcpsYY the file is generated by putting thecps.param file date as the first
column and then the data from the relevant

cpsYY.*.performance.statistics

files as the subsequent columns.

3. The./cps/statistics/cpsYY.performance.eps files are produced using
the corresponding*.dat file and thegnuplot template script:

./cps/inputs/cpsYY/performance.gnuplot.

Memory-Consumption Statistics: The “memory-consumption” statistics is produced
similar to how it is done for thelumping-performance tests. One should only take into
account that for one input we can have several different tools and each of these tools can be
run with a set of different command-line options. In essence, the main steps for generating
“memory-consumption” statistics of each kind (i. e.MVSZ, MRSS, AVSZ, ARSS) are the
same as for the “model-check time” statistics. Note that, asa result we only produce plots
for theMVSZ statistics, i. e../cps/statistics/cpsYY.memory.mvsz.eps. The
latter is generated using thegnuplot template script:

./cps/inputs/cpsYY/memory.gnuplot.

and the./cps/statistics/cpsYY.memory.dat data file.

30

Actual Confidence-Levels Statistics: The main steps for generating the “actual
confidence-levels” statistics are the same as for the “model-check time” statistics.
Note that:

• The reported data can be inprobabilityor in %, as defined by theCONFUNIT param-
eter, see Section2.3.

• The*.confstatfiles, stored in the

./CYCLIC POLLING NXX/statistics/cpsYY

folders, contain a column of ones and zeroes. One corresponds to a correct, and zero
to a wrong model-checking result.

• The files of the intermediate statistics, located in the./cps/statistics/cpsYY
folders, have an extension:*.confidence.statistics.

• As a result we produce./cps/statistics/cpsYY.confidence.dat and
./cps/statistics/cpsYY.confidence.eps. The latter is generated using
thegnuplot script:./cps/inputs/cpsYY/confidence.gnuplot.

Number of Used Observations Statistics: The main steps for generating the “num-
ber of used observations” statistics are the same as for the “model-check time” statistics.
Note that:

• The*.samplestatfiles, stored in the

./CYCLIC POLLING NXX/statistics/cpsYY

folders, contain the number of used observations as reported by the corresponding
tools. An exception is Ymer, which does not report this number. Therefore, the tool
was extended in order to provide us with the desired output. For more details on using
Ymer with the test suite see AppendixA.

• The files of the intermediate statistics, located in the./cps/statistics/cpsYY
folders, have an extension:*.sample.statistics.

• As a result we produce./cps/statistics/cpsYY.sample.dat and
./cps/statistics/cpsYY.sample.eps. The latter is generated using the
gnuplot script:./cps/inputs/cpsYY/sample.gnuplot.

31

6 Contact

The development of MRMC began in 2004 in the Formal Methods and Tools group (FMT)
at the University of Twente (The Netherlands) under the supervision of Prof. Dr. Ir. Joost-
Pieter Katoen. Later, the main development of the tool was moved to the Software Modeling
and Verification group at the RWTH Aachen (Germany). At present there are several other
groups involved into the tool development, namely the Informatics for Technical Applica-
tions group at the Radboud University Nijmegen (The Netherlands), the Dependable Systems
and Software group at the University of Saarland (Germany),and the Scientific Computing
and Control Theory group at the Centrum voor Wiskunde en Informatica (The Netherlands).

If you have any questions, comments or ideas, or if you want toparticipate in MRMC
development, please consider the following contact information:

Name: Prof. Dr. Ir. Joost-Pieter Katoen
Relation: The MRMC team leader, 2004 – present
Affiliation: Software Modeling and Verification, RWTH Aachen, Ger-
many

Name: Dr. Ivan S. Zapreev
Relation: MRMC development, 2004 – present
Affiliation: Scientific Computing and Control Theory, Centrum voor
Wiskunde en Informatica, The Netherlands

Name: Dr. Ir. David N. Jansen
Relation: MRMC extension and optimization, 2007 – present
Affiliation: Informatics for Technical Applications, Radboud University
Nijmegen, The Netherlands

Name: Prof. Dr. Ing. Holger Hermanns
Relation: CTMDPI model checking, 2007 – present
Affiliation: Dependable Systems and Software, University of Saarland,
Germany

More contact information can be found on the MRMC web-page [ZJN+08].

32

http://www-i2.informatik.rwth-aachen.de/~katoen/
http://db.cwi.nl/personen/publiek/zoek_show.php4?persnr=2198
http://www.cs.ru.nl/D.Jansen/
http://depend.cs.uni-sb.de/index.php?hermanns

Bibliography

[ABFH+08] Cerion Armour-Brown, Jeremy Fitzhardinge, Tom Hughes,Nicholas Nether-
cote, Paul Mackerras, Dirk Mueller, Julian Seward, Robert Walsh, and Josef
Weidendorfer,Valgrind, http://www.valgrind.org/, 2008.

[BCG02] A. Bondavalli, A. Coccoli, and F. Di Giandomenico,QoS Analysis of Group
Communication Protocols in Wireless Environment, Kluwer Academic Pub-
lishers Concurrency in Dependable Computing, 2002.

[BKKT03] P. Buchholz, J.-P. Katoen, P. Kemper, and C. Tepper, Model-checking large
structured Markov chains, Journal of Logic and Algebraic Programming56
(2003), 69–96.

[DC03] Jake Dawley-Carr, HowTo: Profile Memory in a Linux System,
http://mail.nl.linux.org/linux-mm/2003-03/msg00077.html, 2003.

[FP04] W. Fokkink and J. Pang,Simplifying Itai-Rodeh leader election for anonymous
rings, Electronic Notes in Theoretical Computer Science128 (2004), no. 6,
53–68.

[GSB94] Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar,On randomization in se-
quential and distributed algorithms, ACM Computing Surveys26 (1994),
no. 1, 7–86.

[HHK00] B. Haverkort, H. Hermanns, and J.-P. Katoen,On the Use of Model Checking
Techniques for Dependability Evaluation, Symposium on Reliable Distributed
Systems (SRDS), IEEE Computer Society, 2000, pp. 228–237.

[HKMKS00] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus
Siegle,A Markov Chain Model Checker, Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (Susanne Graf andMichael
Schwartzbach, eds.), LNCS, vol. 1785, Springer, 2000, pp. 347–362.

[IR90] Alon Itai and Michael Rodeh,Symmetry breaking in distributed networks, In-
formation and Computation88 (1990), no. 1, 60–87.

[IT90] Oliver C. Ibe and Kishor S. Trivedi,Stochastic Petri Net Models of Polling
Systems, Selected Areas in Communications8 (1990), no. 9, 1649–1657.

[JKO+07] David N. Jansen, Joost-Pieter Katoen, Marcel Oldenkamp, Mariëlle Stoelinga,
and Ivan S. Zapreev,How Fast and Fat Is Your Probabilistic Model Checker?,
Haifa Verification Conference (HVC), LNCS, vol. 4899, Springer, 2007,
pp. 65 – 79.

33

http://www.valgrind.org/
http://mail.nl.linux.org/linux-mm/2003-03/msg00077.html

[KKZJ07] Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreev, and David N. Jansen,
Bisimulation Minimisation Mostly Speeds Up ProbabilisticModel Checking,
Tools and Algorithms for the Construction and Analysis of Systems (TACAS)
(Orna Grumberg and Michael Huth, eds.), LNCS, vol. 4424, Springer, 2007,
pp. 87–101.

[KNP02] M. Kwiatkowska, G. Norman, and D. Parker,PRISM: Probabilistic Symbolic
Model Checker, Modelling Techniques and Tools for Computer Performance
Evaluation (TOOLS) (T. Field, P. Harrison, J. Bradley, and U. Harder, eds.),
LNCS, vol. 2324, Springer, 2002, pp. 200–204.

[KNP06] , Symmetry Reduction for Probabilistic Model Checking, Computer
Aided Verification (CAV) (T. Ball and R. Jones, eds.), LNCS, vol. 4114,
Springer, 2006, pp. 234–248.

[KNP08a] , Prism case studies, http://www.prismmodelchecker.org/casestudies/,
2008.

[KNP08b] , Prism web-page, Workstation Cluster Example,
http://www.prismmodelchecker.org/casestudies/cluster.php, 2008.

[KZ09] Joost-Pieter Katoen and Ivan S. Zapreev,Simulation-Based CTMC Model
Checking: An Empirical Evaluation, Quantitative Evaluation of Systems
(QEST), IEEE Computer Society, 2009,www.mrmc-tool.org, pp. 31–40.

[KZH+09] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns,
and David N. Jansen,The Ins and Outs of The Probabilistic Model Checker
MRMC, Quantitative Evaluation of Systems (QEST), IEEE ComputerSociety,
2009,www.mrmc-tool.org, pp. 167–176.

[LP02] Richard Lassaigne and Sylvain Peyronnet,Approximate verification of
probabilistic systems, Process Algebra and Probabilistic Methods, Perfor-
mance Modeling and Verification (PAPM/PROBMIV) (Holger Hermanns and
Roberto Segala, eds.), Springer, 2002, pp. 213–214.

[MKL04] Mieke Massink, Joost-Pieter Katoen, and Diego Latella, Model Checking De-
pendability Attributes of Wireless Group Communication, Dependable Sys-
tems and Networks (DSN), IEEE Computer Society, 2004, pp. 711–720.

[MNS99] Michael Mock, Edgar Nett, and Stefan Schemmer,Efficient Reliable Real-
Time Group Communication for Wireless Local Area Networks, European
Dependable Computing Conference (Jan Hlavicka, Erik Maehle, and Andrs
Pataricza, eds.), LNCS, vol. 1667, Springer, 1999, pp. 380–400.

[PZ86] A. Pnueli and L. Zuck,Verification of Multiprocess Probabilistic Protocols,
Distributed Computing1 (1986), no. 1, 53–72.

[RR98] M. K. Reiter and A. D. Rubin,Crowds: Anonymity for Web Transactions,
ACM Transactions on Information and System Security, vol. 1, ACM Press,
1998, pp. 66–92.

34

http://www.prismmodelchecker.org/casestudies/
http://www.prismmodelchecker.org/casestudies/cluster.php
www.mrmc-tool.org
www.mrmc-tool.org

[Som97] Fabio Somenzi, CUDD: CU decision diagram package,
http://vlsi.colorado.edu/∼fabio/CUDD/, 1997, Public software.

[SVA04] Koushik Sen, Mahesh Viswanathan, and Gul Agha,Statistical Model Check-
ing of Black-Box Probabilistic Systems, Computer Aided Verification (CAV)
(Rajeev Alur and Doron A. Peled, eds.), LNCS, vol. 3114, Springer, 2004,
pp. 202–215.

[YKNP04] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker, Numerical vs. Sta-
tistical Probabilistic Model Checking: An Empirical Study, Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS)(K. Jensen and
A. Podelski, eds.), LNCS, vol. 2988, Springer, 2004, pp. 46–60.

[YKNP06] Håkan Younes, Marta Kwiatkowska, Gethin Norman,and David Parker,Nu-
merical vs. Statistical Probabilistic Model Checking, Software Tools for Tech-
nology Transfer (STTT)8 (2006), no. 3, 216–228.

[You05a] H. Younes,Verification and Planning for Stochastic Processes with Asyn-
chronous Events, Ph.D. thesis, Computer Science Department, Carnegie Mel-
lon University, Pittsburgh, PA, USA, 2005.

[You05b] , Ymer: A Statistical Model Checker, Computer Aided Verification
(CAV) (Kousha Etessami and Sriram K. Rajamani, eds.), LNCS,vol. 3576,
Springer, 2005, pp. 429–433.

[YS06] H. Younes and R. Simmons,Statistical Probabilistic Model Checking with
a Focus on Time-Bounded Properties, Information and Computation204
(2006), no. 9, 1368–1409.

[Zap08] I. S. Zapreev,Model Checking Markov Chains: Techniques and Tools, Ph.D.
thesis, University of Twente, Enschede, The Netherlands, 2008.

[ZJN+08] Ivan S. Zapreev, Christina Jansen, Viet Yen Nguyen, David N. Jansen, et al.,
MRMC homepage, http://www.mrmc-tool.org/, 2008.

35

http://vlsi.colorado.edu/~fabio/CUDD/
http://www.mrmc-tool.org/

A Using Ymer

In order to use Ymer with the performance test suite one has toconsider the following steps:

1. According to the Ymer installation instructions, the CUDD [Som97] package has to
be installed. Typically, installation of this package is a simple task, but there are two
things, one might need to take into account:

a) At least up until CUDD v2.4.1, the package does not have support for the64-bit
architecture. If one is to compile it on a64-bit machine then it can be done by
appending the “-m32” flag to the assignments ofCPPFLAGS, ICFLAGS, and
LDFLAGS variables in the CUDD makefile (CUDD HOME DIR/Makefile).

b) Theconfigure script of Ymer requires theCUDDDIR parameter. Its value
should be the name of the folder containing required libraryand header files of
CUDD. To our knowledge, if CUDD is compiled but is not installed, the required
files are located in several different folders. Thus, one hasto add the following
soft links to theCUDD HOME DIR/include folder:

• libcudd.a -> ../cudd/libcudd.a
• libdddmp.a -> ../dddmp/libdddmp.a
• libepd.a -> ../epd/libepd.a
• libmtr.a -> ../mtr/libmtr.a
• libst.a -> ../st/libst.a
• libutil.a -> ../util/libutil.a

2. Because Ymer uses CUDD, it does not support64-bit architecture as well. In or-
der to overcome this problem, simply add the “-m32” flag to the assignments of
AM CPPFLAGS, AM CFLAGS, andAM LDFLAGS variables in the template makefile
(YMER HOME DIR/Makefile.am) of Ymer.

3. At this point, the Ymer sources can be configured by running:

./configure CUDDDIR=CUDD HOME DIR/include

4. In order to fix some minor source-code problems and to add output, required by the
MRMC test suite,YMER HOME DIR/ymer.cc has to be modified . The modifica-
tions that have to be done are indicated by the following listing in FigureA.1:

5. Now, Ymer is ready for the test suite and can be compiled by running itsmake file.

36

>>diff ymer.cc ymer.old.cc
25d24
< #include <math.h>
411c410
< /* if (optopt == ’?’) {*/

> if (optopt == ’?’) {
414c413
< /* } */

> }
716d714
< std::cout << "Sampled states: " << total_path_lengths << std::endl;

Figure A.1: Modifying Ymer

37

	1 Introduction
	2 General details
	2.1 What is that we are testing?
	2.2 Top-level test-suite structure
	2.3 Configuring tests
	2.4 Common test-suite files

	3 Managing tests
	3.1 Running
	3.1.1 Internal and functional tests
	3.1.2 Lumping-performance tests
	3.1.3 Simulation-performance tests

	3.2 Stopping
	3.3 Cleaning

	4 Internal and functional tests
	5 Performance tests
	5.1 Lumping-performance tests
	5.1.1 Test structure
	5.1.2 Test statistics

	5.2 Simulations-performance tests
	5.2.1 Test structure
	5.2.2 Test statistics

	6 Contact
	A Using Ymer

