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Abstract

The time-bounded reachability problem for continuous-

time Markov chains (CTMCs) amounts to determine the

probability to reach a (set of) goal state(s) within a given

time span, such that prior to reaching the goal certain states

are avoided. Efficient algorithms for time-bounded reacha-

bility are at the heart of probabilistic model checkers such

as PRISM and ETMCC. For large time spans, on-the-fly

steady-state detection is commonly applied. To obtain cor-

rect results (up to a given accuracy), it is essential to avoid

detecting premature stationarity. This paper gives a de-

tailed account of criteria for steady-state detection in the

setting of time-bounded reachability. This is done for for-

ward and backward reachability algorithms. As a spin-off

of this study, new results for on-the-fly steady-state detec-

tion during CTMC transient analysis are reported. Based

on these results, a precise procedure for steady-state de-

tection for time-bounded reachability is obtained. Exper-

iments show the impact of these results in probabilistic

model checking.

1. Introduction

When performing transient analysis for a continuous-

time Markov chain (CTMC), it is common practice—in par-

ticular in case of large time spans—to use a built-in steady-

state detection technique [16, 24]. The underlying idea is to

be able to detect whether the CTMC has reached an equi-

librium before the finish of the (large) time bound. When-

ever such equilibrium is detected, the transient computation

can be stopped thus saving expensive computational steps.

The criteria for detecting such equilibria when guaranteeing

a given overall inaccuracy are, however, not always clear

and may lead to the detection of premature equilibria. This

may happen, for instance, when the probability mass in the

CTMC under consideration only changes slightly in a series

of computational steps due to a “slow” movement.

Why is on-the-fly steady-state detection of importance

for probabilistic model checking [13]? One of the key is-

sues in the model checking of continuous-time probabilistic

models such as CTMCs is the time-bounded reachability

problem. This entails to determine the probability to reach

a (set of) goal state(s) within a given time span, such that

prior to reaching the goal certain states are avoided. This

corresponds to a probabilistic variant of time-bounded until

formulae as they are used in e.g., the verification of timed

automata. For CTMCs, the calculation of such probabilities

can be reduced to a transient analysis on a modified CTMC

[2]. In case of local model checking, a transient analysis

needs to be carried out for a single state only. This can be

efficiently done in a forward manner, i.e., starting from the

state of interest. For global model checking, the validity of

a logical property needs to be checked in every state and

thus this probability must be computed for all states. Doing

so in a backward fashion yields an improvement of O(N)
over-performing the forward algorithm N times,where N is

the size of the state space [11].

As checking time-bounded reachability properties re-

duces to transient analysis, on-the-fly steady-state detection

can be exploited in probabilistic model checking. Proba-

bilistic model checkers such as PRISM [15], ETMCC [9]

and its variants for stochastic Petri nets (such as Great-

SPN [5] and the APNN Toolbox [3]) have adopted this

technique for model checking CSL (Continuous Stochas-

tic Logic [1, 2]), a variant of CTL. These model checkers

have basically adopted steady-state detection as it is, with-

out tailoring it to the specific nature of time-bounded reach-

ability. Other tools that support model checking CSL, such

as VESTA [19] and Ymer [25], use a statistical testing ap-

proach and do not support steady-state detection.

In this paper, we present a detailed analysis of the use

of on-the-fly steady-state detection in this setting. We start

by revisiting and slightly sharpening a (well-known) result

by Fox-Glynn [6] that is used in computing Poisson prob-

abilities, an essential ingredient in CTMC transient analy-

sis. Based on this result, we prove criteria to safely de-

cide whether an equilibrium has been reached for both the



backward and forward reachability algorithm. These crite-

ria sharpen known results for on-the-fly steady-state detec-

tion for CTMC transient analysis [16] and for CSL model

checking [23, 24]. Based on these theoretical results, a sim-

ple procedure is proposed to safely detect equilibria. This

is done by exploiting the structure of the CTMC that is

obtained when reducing time-bounded reachability to tran-

sient analysis. Experimental results complete this paper and

show the impact of our theoretical achievements. By means

of an artificial, though extremely simple CTMC, we show

that various existing probabilistic model checkers detect a

premature equilibrium resulting in incorrect verification re-

sults. We report similar observations for the workstation

cluster [7, 4, 23, 14, 18], an example that has established it-

self as a benchmark problem for probabilistic model check-

ing. (These results confirm a similar phenomenon reported

in a recent analysis of the IEEE 802.11 group communica-

tion protocol [17].) Based on these observations, we firmly

believe that the results in this paper improve current proba-

bilistic model checking technology.

Organization of the paper. Section 2 introduces rele-

vant concepts of CTMCs and their discrete variant, DTMCs.

Section 3 presents the slight refinement of the Fox-Glynn

error-bound. Section 4 introduces the time-bounded reach-

ability problem, its forward and backward algorithm, and

the use of on-the-fly steady-state detection. Sections 5 and

6 contain the main contribution of this paper; these sec-

tions present new criteria for detecting equilibria during

time-bounded reachability, and the algorithm to safely de-

tect steady state. Section 7 reports on the conducted exper-

iments, and Section 8 concludes.

2. Markov chain preliminaries

This section recalls stationary probabilities for DTMCs,

transient probabilities of CTMCs, and some related con-

cepts. For more information we refer to standard textbooks

on Markov chains [22, 8]. Let S = {1, . . . , N} be a finite

set of state indexes with |S| = N .

2.1. Discrete­time Markov chains

Definition 1 A Discrete-Time Markov Chain (DTMC) is a

tuple (S, P) with finite set S of states and state-transition

probability matrix P : S × S → [0, 1], where P = (pi,j)
and ∀i ∈ S :

∑

j∈S pi,j = 1.

The matrix entry pi,j denotes the probability to move

from state i to state j in one step. Let
−−→
p (0) denote the ini-

tial probability distribution of (S, P), i.e., p (0)i denotes

the probability to be initially in state i.

Definition 2 The limiting state-probability of DTMC

(S, P) is a vector
−−−→
p∗(0) such that:

−−−→
p∗(0) = limn→∞

−−→
p (0) · Pn (1)

Whenever this limit exists, it can be obtained by solving

the system of linear equations:

−→p = −→p · P ,
∑

i∈S

pi = 1 (2)

In case the limit (1) does not exist, the equation (2) may

still have a solution. The solution of equation (2) is also

known as stationary or steady-state distribution. In general,

the limiting state-probability p∗(0)i can be interpreted ei-

ther as the proportion of time the DTMC is in state i on the

long run or, alternatively, as the probability that the DTMC

is in state i when taking a snapshot after a long time. The

vector −→p in equation (2) is the left eigenvector of P that

corresponds to the unit eigenvalue. As P is a stochastic

matrix, P always has a unit eigenvalue, and no other eigen-

value exceeds it in modulus.

Theorem 1 [8] An irreducible and aperiodic finite DTMC

has a unique limiting distribution (1). This distribution co-

incides with the steady-state distribution and does not de-

pend on the initial distribution
−−→
p (0).

Informally, irreducible means that every state is reach-

able from every other state, (i.e. the underlying graph is

strongly connected). A DTMC is periodic if one of its states

is periodic. State i is periodic if for some d > 1 it holds that

the probability to return to state i in n steps is 0, for all n
such that n mod d 6= 0. A sufficient condition for an irre-

ducible DTMC to be aperiodic is that there exists at least

one state with a self loop. A possible way to determine

the steady-state probabilities for a DTMC is to compute the

dominant (eigenvalue, eigenvector) pair of P . This is de-

scribed in the following.

The Power method. The Power method [21] is a well-

known numerical technique for computing the dominant

eigenvalue and its eigenvector. In case of a stochastic matrix

P , it amounts to:

−−−→
x (m) =

−−−−−→
x (m−1)·P

For aperiodic P , convergence is guaranteed. If, in ad-

dition, P is irreducible, then the result does not depend on

the initial vector
−−→
x (0). According to [21], the number K of

iterations required to satisfy a tolerance criterion ε > 0 may

be approximately obtained as:

K =
log2 ε

log2 |λ2|



where λ2 is a subdominant eigenvalue of P .

In practice however, λ2 is difficult to compute, and other

convergence tests are used [21], such as for M > 0:

1. An absolute convergence test: ‖
−−→
x (i)−

−−−−−→
x (i+M)‖v < ε

2. A relative convergence test:

maxj∈1,..,N

( |x(i+M)
j
−x(i)

j
|

|x(i+M)
j
|

)

< ε

In general, M is a function of the convergence rate and

the iteration index i, but may be constant. Unfortunately,

none of these tests gives a precise estimate. Stewart [21]

therefore suggests to envisage a battery of convergence

tests, all of which must be satisfied before the approxima-

tion is accepted as being sufficiently accurate.

2.2. Transient and stationary probabilities

Definition 3 A Continuous-Time Markov Chain (CTMC) is

a tuple (S, Q) with finite set S of states and generator ma-

trix Q : S × S → R, where Q = (qi,j), ∀i, j ∈ S : i 6= j :
qi,j ≥ 0, and ∀i ∈ S : qi,i = −

∑

j∈S, i6=j qi,j .

Let us explain the intuitive meaning of qi,j . In a CTMC,

state residence times are exponentially distributed. More

precisely, the time spent in state i is governed by a nega-

tive exponential distribution with rate |qi,i|. The rate |qi,i|
thus specifies the total rate to leave state i. On leaving state

i, a discrete probabilistic choice takes place among all pos-

sible successors, i.e. all states j for which qi,j > 0. The

probability to move to state j is defined as qi,j/|qi,i|. The

transient probabilities of CTMC (S, Q), with time t ∈ R,

are defined by the following differential equation:

d
−−−−−→
π∗ (0, t)

dt
=

−−−−−→
π∗ (0, t) · Q

The solution of this differential equation system is given by:

−−−−−→
π∗ (0, t) =

−−→
p (0) · eQ·t (3)

Here,
−−−−−→
π∗ (0, t) denotes the state-probability after a delay

of t time-units given that
−−→
p (0) is the initial distribution.

π∗ (0, t)i thus is the probability to be in state i after t time-

units given
−−→
p (0).

The stationary (steady-state) probabilities for a CTMC

are a solution of the following system of linear equations:

−→p ·Q =
−→
0 , where

∑

i∈S

pi = 1 (4)

A solution of equation (4) may be found by alternatively

presenting it as the following unit eigenvalue problem [20]:

−→p ·P = −→p

where P = Q
q

+ I and q ≥ maxi∈S |qi,i|. It is well known

[20] that if

q > max
i∈S

|qi,i|

then all eigenvalues, except the unit eigenvalue, are strictly

less than unity in modulus, which makes DTMC P aperi-

odic.

Jensen’s method Jensen’s method, also known as uni-

formization, replaces Q by P in equation (3). Expanding

the matrix exponent according to Taylor-McLaurin yields:

−−−−−→
π∗ (0, t) =

∞
∑

i=0

γi(t)·
−−−→
p(0, i) (5)

where γi(t) = e−qt (qt)i

i! is the Poisson density function,
−−−→
p(0, i) =

−−→
p (0)·P i, and q is the uniformization rate.

2.3. On­the­fly steady­state detection

Equation (5) contains
−−→
p (0) · P i which is the power iter-

ation for the DTMC P , and that is where the steady-state

detection comes into play. Malhotra et al. [16] present

a numerical method, which takes into account steady-state

detection, for computing CTMC transient probabilities (see

equation (5)) with an overall error bound ε. For the sake of

this paper, we state their result in the following form:

Theorem 2 [16] Let (S, P) be an aperiodic DTMC with

initial distribution
−−→
p (0) and steady-state distribution

−−−→
p∗(0).

If for some K and δ > 0 it holds that ∀i ≥ K : ‖
−−−→
p∗(0) −

−−−→
p(0, i)‖v ≤ δ, where ‖.‖v is an arbitrary vector norm 1,
then for

−−−−−→
π
∗ (0, t) =

∞
X

i=0

γi(t)
−−−→
p(0, i)

and for inaccuracy ε > 0:

−−−−→
π (0, t) =

8

>

>

>

>

<

>

>

>

>

:

−−−−→
p(0, K) , if K < Lǫ
PK

i=Lǫ
γi(t)

−−−→
p(0, i)+

−−−−→
p(0, K)

“

1 −
PK

i=0 γi(t)
”

, if Lǫ ≤ K ≤ Rǫ

PRǫ

i=Lǫ
γi(t)

−−−→
p(0, i) , if K > Rǫ

(6)

the following inequality holds:

‖
−−−−−→
π
∗ (0, t) −

−−−−→
π (0, t)‖v ≤ 2δ +

ε

2

Here, Lǫ and Rǫ are computed using the Fox-Glynn

algorithm (see below), such that
∑Lǫ−1

i=0 γi(t) ≤ ε
2 , and

∑∞
i=Rǫ+1 γi(t) ≤

ε
2 .

1It should be noted that Theorem 2 does not hold for an arbitrary norm

‖.‖v . In fact, an additional condition is required, that is ‖−→p ‖v ≤ 1 for

any distribution vector −→p .



Theorem 2 can now be used to obtain a criterion for guar-

anteeing an overall inaccuracy of ε > 0 for transient analy-

sis with on-the-fly steady-state detection.

Corollary 3 Under the same conditions as Theorem 2:

‖
−−−→
p
∗(0) −

−−−−→
p(0, K)‖v ≤

ε

4
implies

‖
−−−−−→
π
∗ (0, t) −

−−−−→
π (0, t)‖v ≤ ε (7)

As ‖
−−−→
p∗(0) −

−−−−→
p(0, K)‖v is not known during computa-

tions (since
−−−→
p∗(0) is unknown, and typically not computed

a priori as this is computationally too expensive), [16] sug-
gests to use the absolute convergence test. This amounts to
replace the premise in equation (7) by:

‖
−−−→
p(0, i) −

−−−−−−−→
p(0, i + M)‖v ≤

ε

4
for M > 0

Accordingly,
−−−−→
p(0, K) with K = i+M is used as an approx-

imation of the real steady-state distribution. This approach

thus boils down to comparing probability vectors that are

M iterations apart. Once these probability vectors are close

enough, it is assumed that the CTMC has reached an equi-

librium. This approach, of course, has the drawback that

due to the use of an approximation of the stationary prob-

ability, an equilibrium may be detected prematurely. A de-

tailed analysis revealed that in deriving the above result in

[16], an important ingredient of the Fox-Glynn algorithm is

not considered, viz. the so-called weights. (Weights will be

discussed in detail in the next section). It will be shown in

the remainder of this paper that weights play an important

role to obtain safe criteria for detecting equilibria.

3. Fox-Glynn error bound revisited

Recall that γi(t) = e−qt (qt)i

i! is a Poisson density func-

tion, thus
∑∞

i=0 γi(t) = 1. γi(t) denotes the probability

that i events occur in a period of t time units, given that the

average rate of events is q. The particular shape of the Pois-

son density function allows for ignoring the “tails” of the

density function. For a given error bound ε > 0, these so-

called left and right truncation points are given by Lǫ and

Rǫ such that:

Lǫ−1
∑

i=0

γi(t) ≤
ε

4
, and

∞
∑

i=Rǫ+1

γi(t) ≤
ε

4
.

For real-valued function f : N → R, the Fox-Glynn algo-

rithm [6] allows to compute

∞
∑

i=0

γi(t)f(i) ≈
1

W

Rǫ
∑

i=Lǫ

wi(t)f(i)

where wi(t) = αγi(t) with Lǫ ≤ i ≤ Rǫ, for some constant

α 6= 0, are weights, and W =
∑Rǫ

i=Lǫ
wi(t) is a normaliza-

tion weight. Note the resemblance of the left-hand side of

the last equation and equation (5). The weights wi(t) and

the normalization weight W are used to prevent underflows

and are computed; α is an unknown constant.

Proposition 4 [6] For real-valued function f with ‖f‖ =

supi∈N |f(i)| and
∑Rǫ

i=Lǫ
γi(t) ≥ 1 − ε

2 it holds:

˛

˛

˛

˛

˛

∞
X

i=0

γi(t)f(i) −
1

W

Rǫ
X

i=Lǫ

wi(t)f(i)

˛

˛

˛

˛

˛

≤ ε · ‖f‖ .

The following refinement can be made for the case when f
does not change sign, i.e., f(i) ≤ 0 or f(i) ≥ 0, for all i.

Proposition 5 For real-valued function f that does not

change sign with ‖f‖ = supi∈N |f(i)| and
∑Rǫ

i=Lǫ
γi(t) ≥

1 − ε
2 it holds:

˛

˛

˛

˛

˛

∞
X

i=0

γi(t)f(i) −
1

W

Rǫ
X

i=Lǫ

wi(t)f(i)

˛

˛

˛

˛

˛

≤
ε

2
· ‖f‖ .

Proof For proof details see [12]. �

4. Time-bounded reachability

A recent popular approach to analyze properties of

Markov chains is probabilistic model checking; for an

overview see [13]. Time-bounded reachability is at the heart

of model-checking algorithms for CTMCs. Let us explain

this problem by means of an example. Consider a CTMC

with many states among which some illegal (or: forbidden)

states and some goal states. Suppose we are interested in de-

termining the states from which a goal state may be reached

with a high probability, say at least 0.92, within time in-

terval [0, 14.5], while never visiting an illegal state before

reaching its goal. We thus consider scenarios in which the

system starts in some state s ∈ S, visits any number of

states which are not illegal, while finally ending up in some

goal state. In the logic CSL [1, 2], a continuous-time prob-

abilistic extension of CTL, this requirement is formulated

by:

P≥0.92(A U[0,14.5] G)

where A denotes the set of legal (allowed) states and G de-

notes the set of goal states.2

The part between parentheses characterizes a set of

paths, where a single path is an alternating sequence

s0t0s1t1s2t2 . . . where tj > 0 denotes the residence time

in state sj , and s0 = s. Such path satisfies A U[0,14.5] G

2In logical formulas, we identify set A with its characteristic function.



if there exists an index j ≥ 0 such that sj ∈ G, si ∈ A
for all i < j, and sj is reached within 14.5 time units, i.e.,
∑j−1

i=0 ti ≤ 14.5. For the sake of brevity, we do not present

the detailed semantics of this operator; these details can be

found in [1, 2].

Time-bounded reachability thus amounts to compute

Prob(s, A U[0,t] G), the probability for state s satisfying

formula A U[0,t] G. This problem can be reduced to the

computation of transient probabilities in a modified CTMC

[2]. This goes as follows. In the original CTMC (S, Q), all

states in G and all states that are neither in A nor in G are

made absorbing, i.e., their outgoing transitions are removed.

This operation is formally defined by:

Definition 4 For CTMC (S, Q) and S′ ⊆ S let CTMC

(S,Q′) be obtained by making all states in S′ absorbing,

i.e., Q′ = Q[S′] where q′i,j = qi,j if i 6∈ S′ and 0 otherwise.

Note, that in order to make a state s in a DTMC absorbing,
all outgoing transitions of s are removed and s is equipped
with a self-loop (with probability 1). In a CTMC, it suffices
to remove the outgoing transitions. It now follows that:

Prob(s,AU[0,t]G) in (S, Q) = Prob(s, SU[t,t]G) in (S,Q [I ∪ G])

where I = S \ (A ∪ G).
For any state s ∈ S, the probability Prob(s, A U[0,t] G)

can be computed using Algorithm 1, where the matrix ex-

ponent can be computed numerically using uniformization

and
−→
1s is the initial distribution for the case when starting

in state s. [11] suggests an improvement of this method (cf.

Algorithm 1 Computing Prob(s, AU[0,t] G) in a “forward”

manner

1: Determine Q [I ∪ G]

2: Compute
−−−−−→
π∗ (s, t) =

−→
1s · eQ[I∪G]t

3: Return Prob(s, A U[0,t] G) =
∑

j∈G π∗ (s, t)j

Algorithm 2). Like before, the matrix exponent is computed

using uniformization. Let
−→
iG be the characteristic vector of

the set G.

Algorithm 2 Computing Prob(s, A U[0,t] G) in a “back-

ward” manner

1: Determine Q [I ∪ G]

2: Compute
−−−→
π∗ (t) = eQ[I∪G]t ·

−→
iG

3: Return ∀s ∈ 1, .., N : Prob(s, A U[0,t] G) = π∗ (t)s

4.1. On­the­fly steady state detection

The steady-state detection for transient analysis of

CTMCs discussed in Section 2.3, is applicable to the for-

ward computations in a straightforward way. Steady-state

detection for backward computations has been recently dis-

cussed in [24]. The approach by Younes et al. is based on

the following result.

Theorem 6 Let (S, P) be an aperiodic DTMC with Ind ⊆

S such that ∀j ∈ Ind : P (j, j) = 1,
−−→
p(i) = P i ·

−−→
iInd and

steady-state vector
−→
p∗. If for some K and δ > 0 it holds

that ∀i ≥ K : ‖
−→
p∗ −

−−→
p(i)‖v ≤ δ, then for

−−−→
π
∗ (t) =

∞
X

i=0

γi(t)
−−→
p(i)

and for inaccuracy ε > 0:

−−→
π (t) =

8

>

>

>

>

<

>

>

>

>

:

−−−→
p(K) , if K < Lǫ
PK

i=Lǫ
γi(t)

−−→
p(i)+

−−−→
p(K)

“

1 −
PK

i=Lǫ
γi(t)

”

, if Lǫ ≤ K ≤ Rǫ

PRǫ

i=Lǫ
γi(t)

−−→
p(i) , if K > Rǫ

(8)

the following inequality holds:

‖
−−−→
π
∗ (t) −

−−→
π (t)‖v ≤ 2δ +

ε

2

Here Lǫ, and Rǫ are computed using the Fox-Glynn al-

gorithm, such that
∑Lǫ−1

i=0 γi(t) ≤
ε
2 and

∑∞
i=Rǫ+1 γi(t) ≤

ε
2 .

In [24], this result has led to the following practical check
for steady-state:

‖
−→
p
∗ −

−−−→
p(K)‖v ≤

ε

8
implies

∀j ∈ S : −
ε

4
≤ π

∗ (t)
j
− π (t)

j
≤

3

4
ε (9)

As before, since
−→
p∗ is not known during computations,

the absolute convergence test is used instead. That is, the

premise is replaced by ‖
−−→
p(i) −

−−−−−−→
p(i + M)‖v ≤ ε

8 . The vec-

tor
−−−→
p(K) with K = i+M is thus used as an approximation

of the steady-state vector. Whereas for the forward analysis

case, the convergence test bound equals ε
4 (cf. equation (7)),

for the backward analysis this is ε
8 (cf. equation (9)). One

may question how safe (and tight) this criterion for equilib-

rium detection is. As these results are based on [16], the

drawbacks of this method are inherited. A detailed look at

the equations (6) and (8) for the case Lǫ ≤ K ≤ Rǫ reveals

that the second summation for the backward case starts at

i = Lǫ rather than i = 0. The justification for this change is

unclear, but has a non-negligible impact on the bound. To be

more precise, this change of the summation index implicitly

increases the error bound and this is not taken care of. More

importantly, though, the analysis resulting in Theorem 6 is

based on the assumption that the steady-state detection er-

ror is two-sided, whereas—due to the backward nature of

the algorithm— it is in fact one-sided.



5. Criteria for steady-state detection

In this section, we provide new error bounds for on-the-

fly steady-state detection during time-bounded reachability.

These results apply to the forward algorithm, i.e., standard

transient analysis, as well as to the backward algorithm.

Remark. The error estimate in [16] is norm based

and relies on the geometrical convergence of power iter-

ations for an aperiodic DTMC. The geometrical conver-

gence is usually proved, based on the total variation norm

which, in an N -dimensional space, is the l∞-norm defined

as ‖v‖∞v = maxi∈1,..,N |vi|. As all norms in a finite-

dimensional space are equivalent, the convergence result

holds for any chosen norm. The error analysis, however,

is vulnerable to the kind of norm used. For example, in

the backward case, the
−→
iG vector is not a distribution and

∀j ∈ 1, .., N : 0 ≤ p(i)j ≤ 1, where
−−→
p(i) = P i ·

−→
iG .

Thus, for instance, if we have N states and take the Eu-

clidean norm ‖.‖2
v, we obtain ‖

∑Lǫ−1
i=0 γi(t)

−−→
p(i)‖2

v � ε
4 ,

but ‖
∑Lǫ−1

i=0 γi(t)
−−→
p(i)‖2

v ≤
√

N
4 ε. The error analysis below

is done for vector elements and uses the ‖.‖∞v norm.

5.1. Transient analysis

Let p∗(0)j be the j’th component of the precise steady-

state solution
−−−→
p∗(0), considering forward computations, for

the initial distribution
−−→
p (0). Let π∗ (0, t)j be the j’th com-

ponent of
−−−−−→
π∗ (0, t), see equation (5). For the case Lǫ ≤

K ≤ Rǫ we consider:

−−−−→
π (0, t) =

1

W

K
X

i=Lǫ

wi(t)
−−−→
p(0, i)+

−−−−→
p(0,K)

 

1 −
1

W

K
X

i=Lǫ

wi(t)

!

This equation is obtained from (6) by replacing the lower

bound of the index of the second summation by i = Lǫ, as

it was done in (8), and assuming the Fox-Glynn algorithm

is used for computations. This is where wi(t) and W play a

role.

Theorem 7 Let (S, P) be an aperiodic DTMC with ini-

tial distribution
−−→
p (0), steady-state distribution

−−−→
p∗(0) and

Ind ⊆ S. If for some K and δ > 0 it holds that

∀i ≥ K : ‖
−−−→
p∗(0) −

−−−→
p(0, i)‖∞v ≤ δ then for

−−−−−→
π
∗ (0, t) =

∞
X

i=0

γi(t)
−−−→
p(0, i)

and for inaccuracy ε > 0:

−−−−→
π (0, t) =

8

>

>

>

>

<

>

>

>

>

:

−−−−→
p(0, K) , if K < Lǫ

1
W

PK

i=Lǫ
wi(t)

−−−→
p(0, i)+

−−−−→
p(0, K)

“

1 − 1
W

PK

i=Lǫ
wi(t)

”

, if Lǫ ≤ K ≤ Rǫ

1
W

PRǫ

i=Lǫ
wi(t)

−−−→
p(0, i) , if K > Rǫ

the following inequality holds:

˛

˛

˛

˛

˛

˛

X

j∈Ind

“

π
∗ (0, t)

j
− π (0, t)

j

”

˛

˛

˛

˛

˛

˛

≤ 2δ|Ind| +
3

4
ε

Here W , wi(t), Lǫ, and Rǫ are computed using the

Fox-Glynn algorithm, such that
∑Lǫ−1

i=0 γi(t) ≤ ε
4 , and

∑∞
i=Rǫ+1 γi(t) ≤ ε

4 , and |Ind| is the cardinality of Ind.

Proof For proof details see [12]. �

Corollary 8 Under the same conditions as Theorem 7:

‖
−−−→
p
∗(0) −

−−−−→
p(0, K)‖∞v ≤

ε

8|Ind|
implies

˛

˛

˛

˛

˛

˛

X

j∈Ind

“

π
∗ (0, t)

j
− π (0, t)

j

”

˛

˛

˛

˛

˛

˛

≤ ε (10)

Let us now return to the calculation of time-bounded

reachability probabilities. For computing the probability

Prob(s, A U[0,t] G) in state s, we have Ind = G and
−−→
p (0) =

−→
1s . According to the above results, the safe stop-

ping criterion to obtain an overall inaccuracy of ε equals

‖
−−−→
p∗(s) −

−−−−→
p(s, K)‖∞v ≤ ε

8|G| . We point out the main dif-

ferences between our result and the results referred to in

Section 2.3. First of all, Theorem 7 takes into account the

weights wi(t) (and the normalization factor W ) for deter-

mining
−−−−→
π (0, t). Hence, different summation bounds for the

case Lǫ ≤ K ≤ Rǫ (as wi(t) = 0 for all i < Lǫ) occur in

the definition of
−−−−→
π (0, t). Secondly, due to the refined bound

for Fox-Glynn (cf. Proposition 5), the bounds on the left and

right truncation errors on which Theorem 7 is based are two

times tighter than ( 1
4 instead of 1

2 ) the corresponding trunca-

tions errors that form the basis for Theorem 2. Theorem 7

refers to the l∞-norm, whereas the norm in Theorem 2 is

left implicit.

The resulting steady-state detection criterion

‖
−−−→
p∗(0) −

−−−−→
p(0, K)‖∞v ≤

ε

8

for the case |Ind| = 1 (the error for a single vector element

π (0, t)j), is tighter than the bound provided in [16] (see

equation (7)):

‖
−−−→
p∗(0) −

−−−−→
p(0, K)‖v ≤

ε

4

The fact that the resulting bound is similar to that in Section

4.1 for backward computations is due to the fact that the

weights introduce an additional error. In the next section, it

will be shown that for backward computations—even taking

into account the error introduced by weights—the steady-

state detection criterion is weaker than in [24] .



5.2. Backward computations

Let π∗ (t)j be the j’th component of
−−−→
π∗ (t), and p∗j be

the j’th component of
−→
p∗. Notice, that, unlike the case for

forward computations, ∀j ∈ 1, .., N : p∗j −p(i)j ≥ 0 for all

i ≥ K , because ∀j ∈ 1, .., N, ∀i ≥ 0 : p(i)j ≤ p(i + 1)j ≤
−→
p∗.

Theorem 9 Let (S, P) be an aperiodic DTMC with Ind ⊆

S such that ∀j ∈ Ind : P (j, j) = 1,
−−→
p(i) = P i ·

−−→
iInd and

steady-state vector
−→
p∗. If for some K and δ > 0 it holds

that ∀i ≥ K : ∀j ∈ 1, .., N : 0 ≤ p∗j − p(i)j ≤ δ, then for

−−−→
π
∗ (t) =

∞
X

i=0

γi(t)
−−→
p(i)

and for inaccuracy ε > 0:

−−→
π (t) =

8

>

>

>

>

<

>

>

>

>

:

−−−→
p(K) , if K < Lǫ

1
W

PK

i=Lǫ
wi(t)

−−→
p(i)+

−−−→
p(K)

“

1 − 1
W

PK

i=Lǫ
wi(t)

”

, if Lǫ ≤ K ≤ Rǫ

1
W

PRǫ

i=Lǫ
wi(t)

−−→
p(i) , if K > Rǫ

the following inequality holds:

‖
−−−→
π
∗ (t) −

−−→
π (t)‖∞v ≤ δ +

3

4
ε

Here W , wi(t), Lǫ, and Rǫ are computed using the

Fox-Glynn algorithm, such that
∑Lǫ−1

i=0 γi(t) ≤ ε
4 , and

∑∞
i=Rǫ+1 γi(t) ≤

ε
4 .

Proof For proof details see [12]. �

Corollary 10 Under the same conditions as Theorem 9:

‖
−→
p
∗ −

−−−→
p(K)‖∞v ≤

ε

4
implies

‖
−−−→
π
∗ (t) −

−−→
π (t)‖∞v ≤ ε (11)

When computing the probability Prob(s, A U[0,t] G)

we have Ind = G and
−−→
iInd =

−→
iG . Recall that the main

difference with the forward algorithm is that we now em-

ploy a global model-checking procedure, i.e., probabili-

ties Prob(s, A U[0,t] G) are determined for all states s.

To guarantee an overall error bound of ε, one should use

‖
−→
p∗ −

−−−→
p(K)‖∞v ≤ ε

4 as a stopping criterion. Although our

result at first sight looks quite similar to that in [24], there

are various small, though important differences. As for the

forward case, the influence of weights (that may yield an ad-

ditional error) is taken into account. Secondly, the change

of the summation lower bound from i = 0 to i = Lǫ in

equation (8) is implicitly taken care of due to the fact that

∀i < Lǫ : wi(t) = 0. If weights are neglected, as in Theo-

rem 6, an error bound is obtained that is too liberal. Finally,

we remark that the steady-state detection error is one-sided

for backward computations.

Table 1. The summary of results

Forward computations

Malhotra’s result [16]: ‖
−−−→
p∗(0) −

−−−−→
p(0, K)‖v ≤ ε

4 implies

‖
−−−−−→
π∗ (0, t) −

−−−−→
π (0, t)‖v ≤ ε (7)

Our result:‖
−−−→
p∗(0) −

−−−−→
p(0, K)‖∞v ≤ ε

8|Ind| implies
∣

∣

∣

∑

j∈Ind

(

π∗ (0, t)j − π (0, t)j

)
∣

∣

∣
≤ ε (10)

Backward computations

Younes’s result [24]: ‖
−→
p∗ −

−−−→
p(K)‖v ≤ ε

8 implies

∀j ∈ S : − ε
4 ≤ π∗ (t)j − π (t)j ≤ 3

4ε (9)

Our result: ‖
−→
p∗ −

−−−→
p(K)‖∞v ≤ ε

4 implies

‖
−−−→
π∗ (t) −

−−→
π (t)‖∞v ≤ ε (11)

5.3. Summary of results

To summarize we provide the Table 1. Please take into

account that our results require the use of weights for the

computations of
−−−→
p∗(0) and

−→
p∗ as well as different left and

right truncation points for the computation of Poisson prob-

abilities (cf. Proposition 5).

6. Safely detecting stationarity

Although the (theoretical) results obtained so far in this

paper provide safe criteria for detecting whether an equilib-

rium has been reached, they suffer from the problem that

the stopping criterion refers to the steady-state vector
−→
p∗

that is typically unknown. A possible way to circumvent

this is to use the absolute convergence test (see Section 2.3

and 4.1). This boils down to comparing probability vec-

tors that are M > 0 iterations apart. This, however, intro-

duces an unknown error. To avoid this unpredictable error,

we suggest to exploit the typical structure of the CTMC for

time-bounded reachability. Recall that for checking the for-

mula A U[0,t] G, all states in G and in I = S \ (A ∪ G)
are made absorbing [2]. Intuitively speaking, on the long

run, the probability mass will flow to the states in G and in

I, or to bottom strongly connected components (BSCCs)—

SCCs that once entered cannot be left anymore—in the re-

mainder of the CTMC, i.e., in the set of states S \ (G ∪ I).
It can be shown (see below), that we can safely replace

each of these BSCCs by a single absorbing state with-

out affecting the validity of the time-bounded reachabil-

ity problem. Checking for an equilibrium now amounts to

check whether the residual probability mass in the remain-

ing non-absorbing states is below a certain threshold. Let

BA,G = {s ∈ B ∩ (A \ G) |B is a BSCC in Q [I ∪ G]}.

Proposition 11 For any state s in CTMC (S, Q), time-

bounded property A U[0,t] G and QB = Q [I ∪ G] [BA,G ]



we have:

Prob(s, AU[0,t]G) in (S, Q) = Prob(s, S U[t,t]G) in (S,QB)

Every state s ∈ A\ (G ∪ BA,G) = S \ (I ∪G∪BA,G) is

a transient state. This follows directly from the construction

of QB.

Forward computations As the probability mass in tran-

sient states of QB on the long run equals 0, this can now be

exploited. Due to the uniformization procedure the same is

valid for the stochastic matrix PB obtained after uniformiz-

ing CTMC (S, QB). When i increases, while computing
−→
1s · P

i
B , the probability to be in a transient state is only de-

creasing, and the probability to be in an absorbing state is

increasing.

Theorem 12 For the stochastic matrix PB obtained after
uniformizing CTMC (S, QB), for any K and δ > 0 the
following holds:

X

j∈A\(G∪BA,G)

p(s,K)j ≤ δ ⇒ ∀i ≥ K : ‖
−−−→
p
∗(s)−

−−−→
p(s, i)‖∞v ≤ δ

Where p(s, i)j is the j’th component of
−−−→
p(s, i) =

−→
1s · P i

B ,

and
−−−→
p∗(s) is the steady-state probability for PB when start-

ing from state s.

Notice that this theorem gives a precise error bound for

a steady-state detection. Still the convergence rate is not

known so the check for steady-state should be performed

every M iterations as before.

Backward computations The backward algorithm is

based on
−−→
p(i) = P i ·

−→
iG , where vector

−→
iG is not a distribu-

tion. The idea of backward computations is to accumulate

the probability to reach states in G. Information about the

probability reaching A \ (G ∪ BA,G) or BA,G ∪ I is, how-

ever, not available. To compute the precise equilibrium, we

propose to compute, in addition to
−−→
p(i), the probability to

be in either BA,G or I after i steps.

Theorem 13 For the stochastic matrix PB obtained after
uniformizing CTMC (S, QB), for any K and δ > 0 the
following holds:

‖
−→
1 −

„

−−−→
p(K) +

−−−−→
p

B (K)

«

‖∞v ≤ δ ⇒ ∀i ≥ K : ‖
−→
p
∗−

−−→
p(i)‖∞v ≤ δ

where
−−→
p(i) = P i

B ·
−→
iG ,

−−−→
pB (i) = P i

B ·
−−−−−→
iBA,G∪I , and

−→
p∗ =

limi→∞ P i
B ·

−→
iG .

7. Experimental results

This section reports on some experiments that we con-

ducted with existing and the proposed approaches towards

on-the-fly steady-state detection. The experiments con-

centrate on illustrating the phenomenon of premature sta-

tionarity in existing model checkers for CTMCs. This is

first shown by means of a simple, though artificial exam-

ple. The fact that these phenomena occur in realistic exam-

ples too is illustrated by means of the workstation cluster

[7, 4, 23, 14, 18], an example that has established itself as

one of the benchmarks for probabilistic model checking. (A

similar phenomenon has been reported for a group commu-

nication protocol in [17].) We finally report on the computa-

tion time needed for our proposed algorithms. The tools that

are used in the experiments are Prism v2.1 [15], ETMCC

v1.4.2 [9] and our model checker called MRMC v1.0 [10].

The first two support an on-the-fly steady-state detection as

described in Section 4.1, whereas MRMC realizes (as an

option) the algorithms proposed in this paper. GreatSPN

v1.0 [5] uses ETMCC as a back-end and the results reported

on ETMCC therefore also apply to GreatSPN.

All experiments are conducted on a Pentium 4 3.00GHz,

2Gb RAM, Suse Linux machine, and are focused on the

backward algorithm. For comparison reasons, exact prob-

abilities obtained from Matlab are used. For presented ex-

amples, curves obtained with Matlab and MRMC, with the

steady-state detection turned on, coincide.

It should be noted that each tool uses different M for

steady-state detection, when employing relative and abso-

lute convergence tests. For example, PRISM uses M = 1,

which allows to save on memory usage, while ETMCC uses

M = 10. This results in the fact that PRISM detects a

steady-state earlier than ETMCC.

A slowly convergent CTMC. Consider the CTMC in

Fig. 1 and let A = {0, 1} and G = {2}. The peculiarity of

this CTMC is that the probability to move from the starting

state 1 to the goal state is very low. Fig. 2 plots the proba-

bility Prob(1, A U[0,t] G) for the tools considered. The ex-

periments for PRISM are performed using either a relative

(rel) or an absolute (abs) convergence test. As we want to

make these two convergence tests behave similarly, the rel-

ative error is set to 10−1. This approximately corresponds

to an absolute error 10−6. Note that ETMCC, and both vari-

ants of PRISM (abs and rel) detect stationarity prematurely

whereas MRMC does not. For the indicated range of t, the

resulting error is within the inaccuracy ε = 10−6; for larger

values of t (upto around 16,000), the resulting probabilities

for ETMCC and PRISM differ more than ε (and MRMC

still does not detect an equilibrium). More details on the

iteration index at which an equilibrium is detected (K), and

the corresponding probability are given in Table 2.



To validate the tweak of the relative error bound for

PRISM, it should be noted that with the original error bound

10−6, the premature steady-state detection still occurs but

for larger values of the time bound t, such as t ≥ 1050000.

Table 2. Steady­state detected on iteration K

Tool Error K PK ·
−→
iΨ

Prism v2.1(abs) 10−6 2 (5.00025 · 10−5 , 2.5 · 10−9, 1.0)

Prism v2.1(rel) 10−1 12 (5.00275 · 10−5, 2.75 · 10−8, 1.0)

ETMCC v1.4.2 10−6 20 (5.00475 · 10−5, 4.75 · 10−8, 1.0)

MRMC v1.0 10
−6 — —

Workstation cluster. As a larger and more realistic

example, we considered the workstation cluster as origi-

nally proposed in [7]. This example is used as a bench-

mark in various papers, e.g., [4, 23, 14, 18]. The exam-

ple consists of two symmetric subsystems both consisting

of L workstations. Inside a subsystem, the workstations

are connected by means of switches that are connected

by a backbone. Each component of the system (worksta-

tion, switch and backbone) is failure prone. Depending on

the number of operational and connected workstations, the

system is said to offer maximum or minimum quality-of-

service. The time-bounded reachability property consid-

ered is the probability to eventually reach a service level be-

low the minimum. The investigated configuration is L=5,

and the minimum QoS equals 3. The resulting CTMC has

about 5,000 states.The rates of the model are taken from

the PRISM web page. Fig. 3 plots the computed proba-

bilities using PRISM and ETMCC using the absolute error

10−6 and relative error 10−3. Where A = all states and

G = states for which not minimum holds.The effect is the

same as for the artificial example shown before. Note that

with the default relative error 10−6, PRISM prematurely de-

tects steady state with the values of time t ≥ 28000.

0 1 2

0.9999

0.00005

0.00005

Figure 1. A slowly convergent CTMC

Runtime. To conclude, we investigated the impact of the

proposed on-the-fly steady-state detection algorithm on the

verification time (for backward computations). The typical

pattern obtained is depicted in Fig. 4. Prior to the point

from which a steady state is detected during computations,
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Figure 4. Time required for computing

Prob(0, A U[0,t] G) with and without steady-state

detection

the run time is doubled. This is due to the fact that for

the backward algorithm
−−−→
pB (i) is computed in addition to

−−→
p(i). Once the equilibrium is reached (and detected), the

run time for the variant with steady-state detection remains

constant, whereas the runtime of the plain algorithm contin-

ues to grow linearly in t.



8. Concluding remarks

This paper presented refined error bounds for existing

standard transient analysis and for time-bounded reachabil-

ity algorithms that incorporate on-the-fly steady-state detec-

tion. These results are obtained using a refined bound for

the Fox-Glynn algorithm. (Proofs are omitted in this paper;

all of them can be found in [12].) These results are comple-

mented by a simple technique to safely detect a steady-state

for standard transient analysis and time-bounded reachabil-

ity. Experiments showed the impact of this new algorithm.

Our backward algorithm increases runtime (factor two), and

requires two extra vectors. For the forward algorithm there

is no increase of time, and no additional space is required.

In both cases it is guaranteed to avoid detecting premature

equilibria.
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