Joost-Pieter Katoen^{1,2} Ivan S. Zapreev^{1,2}

¹Software Modeling and Verification Group RWTH Aachen

²Formal Methods and Tools Group University of Twente

September 4, 2006

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- On-the-fly steady-state detection
- 3 Time-bounded reachability
- 4 Results
- 5 Detecting steady state
- 6 Experiments

Outline

1 Motivation

- On-the-fly steady-state detection
- 3 Time-bounded reachability
- 4 Results
- 5 Detecting steady state
- 6 Experiments
- 7 Conclusions

Motivation

Time-bounded reachability for continuous-time Markov chains

- Determine the probability to reach a (set of) goal state(s) within a given time span, such that prior to reaching the goal certain states are avoided.
- Efficient algorithms for time-bounded reachability are at the heart of probabilistic model checkers such as PRISM and ETMCC.
- For large time spans, on-the-fly steady-state detection is commonly applied.
- To obtain correct results (up to a given accuracy), it is essential to avoid detecting premature stationarity.

Safe On-The-Fly Steady-State Detection for Time-Bounded Reachability On-the-fly steady-state detection

Outline

1 Motivation

- 2 On-the-fly steady-state detection
- 3 Time-bounded reachability
- 4 Results
- 5 Detecting steady state
- 6 Experiments
- 7 Conclusions

Transient analysis

Transient probabilities of a CTMC

For a CTMC (S, Q) the state-probability after a delay of t time-units with the initial distribution $\overrightarrow{p(0)}$:

$$\overrightarrow{\pi^{*}\left(0,t
ight)}=\overrightarrow{p\left(0
ight)}\cdot e^{\mathcal{Q}\cdot t}$$

Jensen's method (Uniformization)

• Rewrite
$$Q = q \cdot (\mathcal{P}_{unif} - \mathcal{I})$$
, where $q > \max_{i \in S} |q_{i,i}|$:

$$\overrightarrow{\pi^{*}(0,t)} = e^{-qt} \cdot \overrightarrow{p(0)} \cdot e^{\mathcal{P}_{unif} \cdot qt}$$

• Rewrite matrix exponent, where $\gamma_i(t) = e^{-qt} \frac{(qt)^i}{i!}$:

$$\overrightarrow{\pi^*(0,t)} = \sum_{i=0}^{\infty} \gamma_i(t) \cdot \overrightarrow{p(0)} \cdot \mathcal{P}_{unif}^i$$
(1)

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 _ 釣ぬ()

Transient analysis

Transient probabilities of a CTMC

For a CTMC (S, Q) the state-probability after a delay of t time-units with the initial distribution $\overrightarrow{p(0)}$:

$$\overrightarrow{\pi^{*}\left(0,t
ight)}=\overrightarrow{p\left(0
ight)}\cdot e^{\mathcal{Q}\cdot t}$$

Jensen's method (Uniformization)

• Rewrite
$$Q = q \cdot (\mathcal{P}_{unif} - \mathcal{I})$$
, where $q > \max_{i \in S} |q_{i,i}|$:
 $\overrightarrow{\pi^*(0, t)} = e^{-qt} \cdot \overrightarrow{p(0)} \cdot e^{\mathcal{P}_{unif} \cdot qt}$

• Rewrite matrix exponent, where
$$\gamma_i(t) = e^{-qt} \frac{(qt)^i}{i!}$$
:

$$\overrightarrow{\pi^*(0,t)} = \sum_{i=0}^{\infty} \gamma_i(t) \cdot \overrightarrow{p(0)} \cdot \mathcal{P}_{unif}^i$$
(1)

The Fox-Glynn algorithm (Fox and Glynn, 1988)

Lemma

For real-valued function f with $||f|| = \sup_{i \in \mathbb{N}} |f(i)|$ and $\sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} \gamma_i(t) \ge 1 - \frac{\varepsilon}{2}$ it holds:

$$\left|\sum_{i=0}^{\infty} \gamma_i(t) f(i) - \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} w_i(t) f(i)\right| \leq \varepsilon \cdot \|f\|$$

Where

 $egin{aligned} &lpha
eq 0, ext{ some constant} \ &w_i(t) &= lpha \gamma_i(t) \ &W &= w(\mathcal{L}_\epsilon) + \ldots + w(\mathcal{R}_\epsilon) \end{aligned}$

5900

Safe On-The-Fly Steady-State Detection for Time-Bounded Reachability On-the-fly steady-state detection

The Fox-Glynn algorithm (Fox and Glynn, 1988)

Lemma

For real-valued function f with $||f|| = \sup_{i \in \mathbb{N}} |f(i)|$ and $\sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} \gamma_i(t) \ge 1 - \frac{\varepsilon}{2}$ it holds:

$$\left|\sum_{i=0}^{\infty}\gamma_i(t)f(i)-rac{1}{W}\sum_{i=\mathcal{L}_\epsilon}^{\mathcal{R}_\epsilon}w_i(t)f(i)
ight|\leqrac{arepsilon}{2}\cdot\|f\|$$

if f does not change sign.

Where

$$lpha \neq 0$$
, some constant
 $w_i(t) = lpha \gamma_i(t)$
 $W = w(\mathcal{L}_{\epsilon}) + \ldots + w(\mathcal{R}_{\epsilon})$

On-the-fly steady-state detection

On-the-fly steady-state detection

On-the-fly steady-state detection

On-the-fly steady-state detection

Safe On-The-Fly Steady-State Detection for Time-Bounded Reachability Time-bounded reachability

Outline

- On-the-fly steady-state detection
- 3 Time-bounded reachability
- 4 Results
- 5 Detecting steady state
- 6 Experiments

Safe On-The-Fly Steady-State Detection for Time-Bounded Reachability Time-bounded reachability

Time-bounded reachability

Example

Determine states from which goal states may be reached with a probability at least 0.92, within the time interval [0, 14.5], while visiting only allowed states.

$$\mathrm{P}_{\geq 0.92}(\mathcal{A} \mathrm{U}^{[0,14.5]} \mathcal{G})$$

 $\ensuremath{\mathcal{A}}$ - allowed states

 ${\mathcal G}\,$ - goal states

Definition

For CTMC (S, Q) and $S' \subseteq S$ let CTMC (S, Q') be obtained by making all states in S' absorbing, i.e., Q' = Q[S'] where $q'_{i,j} = q_{i,j}$ if $i \notin S'$ and 0 otherwise.

Time-bounded reachability

Computing $Prob(s, \mathcal{A} \cup [0,t] \mathcal{G})$

Backward algorithm

- **1** Determine $\mathcal{Q}[\mathcal{I} \cup \mathcal{G}]$
 - 2 Compute $\pi^*(t) = e^{\mathcal{Q}[\mathcal{I} \cup \mathcal{G}] \cdot t} \cdot \mathbf{1}_{\mathcal{G}}$
 -) Return $orall s\in 1,..,N$: $extsf{Prob}(s,\ \mathcal{A}\ \mathrm{U}^{[0,t]}\ \mathcal{G})=\pi^{st}\left(t
 ight)$

Time-bounded reachability

Computing $Prob(s, \mathcal{A} \cup [0,t] \mathcal{G})$

・ロト ・ 一下・ ・ ヨト ・ 日 ・

э

Backward algorithm

- **1** Determine $\mathcal{Q}[\mathcal{I} \cup \mathcal{G}]$
 - 2 Compute $\pi^*(t) = e^{\mathcal{Q}[\mathcal{I} \cup \mathcal{G}] \cdot t} \cdot \vec{1_{\mathcal{G}}}$

) Return $orall s\in 1,..,N$: $extsf{Prob}(s,\ \mathcal{A}\ \mathrm{U}^{[0,t]}\ \mathcal{G})=\pi^{st}\left(t
ight)$

Time-bounded reachability

Computing $Prob(s, \mathcal{A} \cup [0,t] \mathcal{G})$

Backward algorithm

- **1** Determine $\mathcal{Q}[\mathcal{I} \cup \mathcal{G}]$
 - 2 Compute $\pi^*(t) = e^{\mathcal{Q}[\mathcal{I} \cup \mathcal{G}] \cdot t} \cdot \vec{\mathbf{1}_{\mathcal{G}}}$

) Return $orall s \in 1,..,N$: $extsf{Prob}(s,\ \mathcal{A}\ \mathrm{U}^{[0,t]}\ \mathcal{G}) = \pi^*\left(t
ight),$

Time-bounded reachability

Computing $Prob(s, \mathcal{A} \cup [0,t] \mathcal{G})$

Backward algorithm

- **O** Determine $\mathcal{Q}[\mathcal{I} \cup \mathcal{G}]$
- 2 Compute $\overrightarrow{\pi^*(t)} = e^{\mathcal{Q}[\mathcal{I} \cup \mathcal{G}] \cdot t} \cdot \overrightarrow{\mathbf{1}_{\mathcal{G}}}$

) Return $orall s \in 1,..,N$: $extsf{Prob}(s,\ \mathcal{A} extsf{U}^{[0,t]} \mathcal{G}) = \pi^{st}\left(t
ight)_{s}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Time-bounded reachability

Computing $Prob(s, \mathcal{A} \cup [0,t] \mathcal{G})$

Backward algorithm

Time-bounded reachability

Computing $Prob(s, \mathcal{A} \cup [0,t] \mathcal{G})$

Backward algorithm

Determine Q [I U G]
Use \$\overline{\pi^*(t)}\$ = \$\sum_{i=\mathcal{L}_{\epsilon}}\$ \$w_i(t)\$\cdot \$P_{unif}^i\$ \$\cdot \$\overline{\pi_G}\$\$
Return \$\forall s \in 1, ..., N\$: \$Prob(s, \$\mathcal{L}\$ U^[0,t] \$\mathcal{G}\$) = \$\pi^*(t)_s\$\$

Time-bounded reachability

Backward computations

$$\begin{pmatrix} 0.0 & 0.5 & 0.5 & 0.0 \\ 0.3 & 0.0 & 0.0 & 0.7 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{pmatrix}^{t} \cdot \overrightarrow{1_{\mathcal{G}}} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 1.0 \end{pmatrix}$$

æ

ヘロト ヘヨト ヘヨト ヘヨト

Time-bounded reachability

Time-bounded reachability

Time-bounded reachability

Time-bounded reachability

Backward computations

・ロト ・ 雪 ト ・ ヨ ト

э

Time-bounded reachability

Time-bounded reachability

Time-bounded reachability

Time-bounded reachability

Results

Outline

Motivation

- 2 On-the-fly steady-state detection
- 3 Time-bounded reachability

- 5 Detecting steady state
- 6 Experiments

Results

Refined steady-state detection error

Backward Computations

Let $\exists K : \forall i \geq K : \forall j \in 1, ..., N : 0 \leq p_j^* - p(i)_j \leq \delta$.

$$\overrightarrow{\pi(t)} = \begin{cases} \overrightarrow{p(K)} &, \text{ if } K < \mathcal{L}_{\epsilon} \\ \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{K} w_{i}(t) \overrightarrow{p(i)} + \\ \overrightarrow{p(K)} \left(1 - \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{K} w_{i}(t)\right) &, \text{ if } \mathcal{L}_{\epsilon} \leq K \leq \mathcal{R}_{\epsilon} \\ \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} w_{i}(t) \overrightarrow{p(i)} &, \text{ if } K > \mathcal{R}_{\epsilon} \end{cases}$$

Then if $\sum_{i=0}^{\mathcal{L}_{\epsilon}} \gamma_i(t) \leq \frac{\epsilon}{4}$, $\sum_{i=\mathcal{R}_{\epsilon}}^{\infty} \gamma_i(t) \leq \frac{\epsilon}{4}$:

$$\|\overrightarrow{\pi^{*}(t)} - \overrightarrow{\pi(t)}\|_{v}^{\infty} \leq \delta + \frac{3}{4}\varepsilon$$

Results

Steady-state detection criteria

Backward

- Steady-state is detected if $\|\overrightarrow{p^*} \overrightarrow{p(K)}\|_v^\infty \leq \frac{\varepsilon}{4}$
- 2 Use the Fox-Glynn algorithm with desired error $\frac{\epsilon}{2}$
- **③** Then the overall error bound for $Prob(s, \mathcal{A} \cup [0,t] \mathcal{G})$, will be ϵ

Results

Comparing the results

Forward computations

Known (Malhotra et. al):

 $\|p^*(0) - p(0,K)\|_v \leq \frac{\varepsilon}{4}$

New:

 $\left\| - \overrightarrow{p(0,K)} \right\|_{\mathcal{V}}^{\infty} \leq \frac{\varepsilon}{\mathfrak{v}[t_{red}]} \left\| \sum_{i \in locl} \left(\pi^*(0,t)_i - \pi(0,t)_i \right) \right\| \leq \varepsilon$

Backward computations

Known (Younes et. al):

 $\|p^* - p(K)\|_v \le \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \le \pi^* (t)_j - \pi (t)_j \le \frac{3}{4}\varepsilon$

New:

 $\vec{k} - \vec{p(K)} \|_{v}^{\infty} \leq \frac{\varepsilon}{4}$

Results

Comparing the results

Forward computations

Known (Malhotra et. al): $\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0, K)}\|_{v} \leq \frac{\varepsilon}{4}$ New:

$$\|\overrightarrow{\pi^{*}(0,t)} - \overrightarrow{\pi(0,t)}\|_{v} \leq \varepsilon$$

$$\left|\sum_{j\in \mathit{Ind}}\left(\pi^{*}\left(0,t
ight)_{j}-\pi\left(0,t
ight)_{j}
ight)
ight|\leqarepsilon$$

Backward computations

Known (Younes et. al):

$$\left\| p^* - p(\mathcal{K}) \right\|_{\nu} \leq \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \leq \pi^* \left(t \right)_j - \pi \left(t \right)_j \leq \frac{3}{4}\varepsilon$$

New:

 $\overrightarrow{p^*} - \overrightarrow{p(K)} \|_{v}^{\infty} \leq \frac{\varepsilon}{4}$

Results

Comparing the results

Forward computations

Known (Malhotra et. al): $\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0,K)}\|_{v} \leq \frac{\varepsilon}{4}$ New:

$$\|\overrightarrow{\pi^{*}\left(0,t\right)}-\overrightarrow{\pi\left(0,t\right)}\|_{v}\leq\varepsilon$$

$$\sum_{j\in \mathit{Ind}}\left(\pi^{*}\left(0,t
ight)_{j}-\pi\left(0,t
ight)_{j}
ight)
ight|\leqarepsilon$$

(日)

э

Backward computations

Known (Younes et. al):

$$\overline{p^*} - \overline{p(K)} \|_v \leq rac{arepsilon}{8} \quad orall j \in S: -rac{arepsilon}{4} \leq \pi^* \left(t
ight)_j - \pi \left(t
ight)_j \leq rac{3}{4}arepsilon$$

New:

 $\|\overrightarrow{p}^* - \overrightarrow{p(K)}\|_v^\infty \leq rac{arepsilon}{4}$

Results

Comparing the results

Forward computations

Known (Malhotra et. al):
$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_v \leq \frac{\varepsilon}{4}$$

$$\|\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}\|_{v} \leq \varepsilon$$

New:

$$\|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_v^\infty \leq rac{arepsilon}{8|Ind|}$$

$$\left| \sum_{j \in \mathit{Ind}} \left(\pi^{*}\left(0,t
ight)_{j} - \pi\left(0,t
ight)_{j}
ight)
ight| \leq arepsilon$$

Backward computations

Known (Younes et. al):

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{\mathbf{v}} \leq \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \leq \pi^* \left(t\right)_j - \pi \left(t\right)_j \leq \frac{3}{4}\varepsilon$$

New:

 $\|\overrightarrow{\pi^{*}(t)}-\overrightarrow{\pi(t)}\|_{v}^{\infty}\leq$

Results

Comparing the results

Forward computations

Known (Malhotra et. al):
$$\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0, K)}\|_{v} \leq \frac{\varepsilon}{4} \qquad \|\overline{\pi^{*}}\|_{v}$$

$$\|\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}\|_v \leq \varepsilon$$

New:

$$\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \leq rac{arepsilon}{8|Ind|} \quad \left|\sum_{j \in \mathit{Ind}} \left(\pi^{*}\left(0,t
ight)_{j} - \pi\left(0,t
ight)_{j}
ight)\right| \leq arepsilon$$

Backward computations

Known (Younes et. al):

 $\overline{\overrightarrow{p^*}} - \overline{p(K)} \|_{v} \leq \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \leq \pi^* \left(t \right)_j - \pi \left(t \right)_j \leq \frac{3}{4}\varepsilon$

New:

 $\overrightarrow{\pi^{*}(t)} - \overrightarrow{\pi(t)} \|_{v}^{\infty} \leq \varepsilon$

Results

Comparing the results

Forward computations

Known (Malhotra et. al):
$$\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0,K)}\|_{v} \leq \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^{*}(0,t)} - \overrightarrow{\pi(0,t)}\|_{v} \leq \varepsilon$$

New:

$$\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{8|\mathit{Ind}|} \quad \left|\sum_{j \in \mathit{Ind}} \left(\pi^{*}\left(0,t\right)_{j} - \pi\left(0,t\right)_{j}\right)\right| \leq \varepsilon$$

Known (Younes et. al):

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{v} \leq \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \leq \pi^* (t)_j - \pi (t)_j \leq \frac{3}{4}\varepsilon$$
New:

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{\infty}^{\infty} \leq \frac{\varepsilon}{8} \quad \|\pi^* (t) - \pi (t)\|_{\infty}^{\infty} \leq \varepsilon$$

Results

Comparing the results

Forward computations

$$\begin{array}{l} \text{Known (Malhotra et. al):} \\ \|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_v \leq \frac{\varepsilon}{4} \\ \text{New:} \end{array} \\ \|\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}\|_v \leq \varepsilon \end{array}$$

$$\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{8|\mathit{Ind}|} \quad \left|\sum_{j \in \mathit{Ind}} \left(\pi^{*}\left(0,t\right)_{j} - \pi\left(0,t\right)_{j}\right)\right| \leq \varepsilon$$

Known (Younes et. al):

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{v} \leq \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \leq \pi^* (t)_j - \pi (t)_j \leq \frac{3}{4}\varepsilon$$
New:

Results

Comparing the results

Forward computations

$$\begin{array}{l} \text{Known (Malhotra et. al):} \\ \|\overrightarrow{p^*(0)} - \overrightarrow{p(0,K)}\|_{v} \leq \frac{\varepsilon}{4} \\ \text{New:} \end{array} \\ \|\overrightarrow{\pi^*(0,t)} - \overrightarrow{\pi(0,t)}\|_{v} \leq \varepsilon \end{array}$$

$$\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{8|\mathit{Ind}|} \quad \left|\sum_{j \in \mathit{Ind}} \left(\pi^{*}\left(0,t\right)_{j} - \pi\left(0,t\right)_{j}\right)\right| \leq \varepsilon$$

Known (Younes et. al):

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{\nu} \leq \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \leq \pi^* (t)_j - \pi (t)_j \leq \frac{3}{4}\varepsilon$$
New:

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{\nu}^{\infty} \leq \frac{\varepsilon}{4} \quad \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{\nu}^{\infty} \leq \varepsilon$$

Results

Comparing the results

Forward computations

Known (Malhotra et. al):

$$\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0, K)}\|_{v} \leq \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^{*}(0, t)} - \overrightarrow{\pi(0, t)}\|_{v} \leq \varepsilon$$
New:

$$\|\overrightarrow{p^{*}(0)} - \overrightarrow{p(0,K)}\|_{v}^{\infty} \leq \frac{\varepsilon}{8|\mathit{Ind}|} \quad \left|\sum_{j \in \mathit{Ind}} \left(\pi^{*}\left(0,t\right)_{j} - \pi\left(0,t\right)_{j}\right)\right| \leq \varepsilon$$

Known (Younes et. al):

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{\nu} \leq \frac{\varepsilon}{8} \quad \forall j \in S : -\frac{\varepsilon}{4} \leq \pi^* (t)_j - \pi (t)_j \leq \frac{3}{4}\varepsilon$$
New:

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{\nu}^{\infty} \leq \frac{\varepsilon}{4} \qquad \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{\nu}^{\infty} \leq \varepsilon$$

Results

Why do our results differ?

The major reasons

- Improval of the Fox-Glynn error bound
- ② Consideration of the error imposed by the weights $w_i(t)$
- Refinement of the error-bound derivation for steady-state detection

▲日▼▲□▼▲□▼▲□▼ □ のので

Restriction to /[∞]-norm

Results

Why do our results differ?

The major reasons

- Improval of the Fox-Glynn error bound
- 2 Consideration of the error imposed by the weights $w_i(t)$
- Refinement of the error-bound derivation for steady-state detection

▲日▼▲□▼▲□▼▲□▼ □ のので

Restriction to I[∞]-norm

Results

Why do our results differ?

The major reasons

- Improval of the Fox-Glynn error bound
- 2 Consideration of the error imposed by the weights $w_i(t)$
- Refinement of the error-bound derivation for steady-state detection

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Restriction to I[∞]-norm

Results

Why do our results differ?

The major reasons

- Improval of the Fox-Glynn error bound
- 2 Consideration of the error imposed by the weights $w_i(t)$
- Refinement of the error-bound derivation for steady-state detection

▲日▼▲□▼▲□▼▲□▼ □ ののの

• Restriction to I^{∞} -norm

Outline

Motivation

- 2 On-the-fly steady-state detection
- 3 Time-bounded reachability

4 Results

- 5 Detecting steady state
- 6 Experiments

Conclusions

Making states absorbing, for $\mathcal{A} \ \mathrm{U}^{[0,t]} \ \mathcal{G}$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

Making states absorbing, for $\mathcal{A} \ \mathrm{U}^{[0,t]} \, \mathcal{G}$

Making states absorbing, for $\mathcal{A} \ \mathrm{U}^{[0,t]} \, \mathcal{G}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Making states absorbing, for $\mathcal{A} \ \mathrm{U}^{[0,t]} \, \mathcal{G}$

Precise steady-state detection, Backward computations

Theorem

For the stochastic matrix \mathcal{P}_B obtained after uniformizing CTMC (S, \mathcal{Q}^B) , for any K and $\delta > 0$ the following holds:

$$\|\overrightarrow{1} - \left(\overrightarrow{p(K)} + \overrightarrow{p^{B}(K)}\right)\|_{v}^{\infty} \leq \delta \Rightarrow \forall i \geq K : \|\overrightarrow{p^{*}} - \overrightarrow{p(i)}\|_{v}^{\infty} \leq \delta$$

Where

$$\overrightarrow{p(i)} = \mathcal{P}_{B}^{i} \cdot \overrightarrow{1_{\mathcal{G}}}$$

$$\overrightarrow{p^{B}(i)} = \mathcal{P}_{B}^{i} \cdot \overrightarrow{i_{B_{\mathcal{A},\mathcal{G}} \cup \mathcal{I}}}$$

$$\overrightarrow{p^{*}} = \lim_{i \to \infty} \mathcal{P}_{B}^{i} \cdot \overrightarrow{1_{\mathcal{G}}}$$

Outline

Motivation

- On-the-fly steady-state detection
- 3 Time-bounded reachability
- 4 Results
- Detecting steady state
- 6 Experiments

Premature steady-state detection

Tools

Tool Name	Reference	S.s.d. method
Prism v2.1	(Kwiatkowska et al., 2004)	regular
ETMCC v1.4.2	(Hermanns et al., 2003)	regular
MRMC v1.0	(Katoen et al., 2005)	precise

Example

Experiments

Computational results

Example

Tool	Error	K	$\mathcal{P}^{K} \cdot \overrightarrow{1_{\mathcal{G}}}$	$\overrightarrow{p^*}$
Prism v2.1(abs)	10^{-6}	2	$(5.00025 \cdot 10^{-5}, 2.5 \cdot 10^{-9}, 1.0)$	
Prism v2.1(rel)	10^{-1}	12	$(5.00275 \cdot 10^{-5}, 2.75 \cdot 10^{-8}, 1.0)$	$(10 \ 10 \ 10)$
ETMCC v1.4.2	10^{-6}	20	$(5.00475 \cdot 10^{-5}, 4.75 \cdot 10^{-8}, 1.0)$	(1.0, 1.0, 1.0)
MRMC v1.0	10^{-6}	—		

▲ロ → ▲ 御 → ▲ 臣 → ▲ 臣 → の Q ()

Experiments

Workstation cluster (Haverkort et al., 2000)

SQA

Experiments

IEEE 802.11 protocol (Massink et al., 2004)

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

Experiments

Computation time

Figure: Time required to compute $Prob(0, \Phi U^{[0,t]} \Psi)$ probabilities

ヘロン 人間 とくほど 人間 とう

э

Conclusions

Outline

Motivation

- 2 On-the-fly steady-state detection
- 3 Time-bounded reachability
- 4 Results
- 5 Detecting steady state
- 6 Experiments

Conclusions

Conclusions

Results

- The error bound corrections
 - Steady-state detection fixed multiple problems
 - The Fox-Glynn algorithm partial error-bound refinement
 - Uniformization using the Fox-Glynn added weights influence
- Precise steady-state detection criteria
 - Forward computations preserves time complexity, computation time may slightly increase
 - Backward computations preserves time complexity, computation time may approximately double

(Katoen and Zapreev, 2006)

For more details see our QEST'06 paper.

Conclusions

Computational results

Conclusions

Computational results

ヨ のへで

Fox, B. L. and Glynn, P. W.: 1988, Computing Poisson probabilities, *Commun. ACM* **31(4)**, 440

Haverkort, B., Hermanns, H., and Katoen, J.-P.: 2000, On the use of model checking techniques for dependability evaluation, in *IEEE symp. on Reliable Distributed Systems (SRDS'00)*, pp 228–237

Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., and Siegle, M.: 2003, A tool for model-checking Markov chains, Int. J. on Softw. for Technology Transfer (STTT) 4(2), 153

Katoen, J.-P., Khattri, M., and Zapreev, I. S.: 2005, A Markov reward model checker, in *Quantitative Evaluation of Systems (QEST)*, pp 243–244

Katoen, J.-P. and Zapreev, I. S.: 2006, Safe on-the-fly steady-state detection for time-bounded reachability, in *Quantitative Evaluation of Systems (QEST)*, IEEE Computer Society

Kwiatkowska, M., Norman, G., and Parker, D.: 2004, PRISM 2.0: A tool for probabilistic model checking, in *Quantitative Evaluation of Systems (QEST)*, pp 322–323

Massink, M., Katoen, J.-P., and Latella, D.: 2004, Model checking dependability attributes of wireless group communication, in *Dependable Systems and Networks (DSN)*, pp 711–720, IEEE Computer Society

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @